
Tomada de Decisão Multiplo Atributo

Tiago Simas
APDIO WORKSHOP
Outubro 2010

Modelos de Decisão Multiplo Atributo

- Simple Additive Weighting (SAW) Method
- Weighted Product Method (WPM)
- Analytic Hierarchy Process (AHP) Method
- ELECTRE Method
- TOPSIS
- Modelos de Decisão Difusos
- Fuzzy SAW
- Fuzzy WPM
- Fuzzy AHP
- Fuzzy TOPSIS

MADM

- Conjunto de Alternativas
- Um conjunto de Atributos/Critérios
- Pesos entre Atributos

	C1	C2	C3	C4	C5
A1	r_{11}	r_{12} r_{22} r_{32}	r_{13}	r_{14}	r_{15}
A2	r_{21}	r_{22}	r_{23}	r_{24}	r_{25}
A3	$\lfloor r_{31} \rfloor$	r_{32}	r_{33}	<i>r</i> ₃₄	r ₃₅ _

- As entradas r_{ij} da Matriz A/C podem ter varios tipos de dados:
 - Numéricos (Quantitativos)
 - Não Numéricos (Qualitativos)

- Exemplo: Compra de um carro
 - Critérios: Preço (€); Consumo: L/Km; Cor; etc...
 - Alternativas: Todo o stock de carros a escolher.

Normalização dos Critérios

- Os critérios podem ser normalizados pelo o uso de diversas técnicas de acordo com as seguintes situações:
 - Mistura de critérios Qualitativos com Quantitativos.
 - Só Quantitativos;
 - Só Qualitativos.

 Neste curso só vamos abordar os métodos de normalização Quantitativos.

- Dentro desta classe de problemas temos várias situações:
 - Critérios de beneficio;
 - Critérios de custo;
 - · Critérios não-monótonicos.

Normalização de critérios de beneficio

Normalização Linear:

$$r_{ij} = \frac{x_{ij}}{\max(x_j)}$$

Normalização Vectorial:

$$r_{ij} = \frac{x_{ij}}{\sqrt{\sum_{i=1}^{m} x_{ij}^2}}$$

Exemplo 1

N. Linear para C1: $x_1 = max(3.1,4.3) = 4.3$

Assim,
$$r_{11}$$
=3.1/4.3=0.72 r_{21} =4.3/4.3=1.00

Aplica-se o mesmo para os restantes critérios.

Exemplo 2

N. Vectorial:

Para a Alternativa A1 temos: A1=(3.1,4.3)

$$r_{11} = \frac{3.1}{\sqrt{3.1^2 + 4.3^2}} = \frac{3.1}{5.3} = 0.58$$

1. Normalização Linear:
$$\begin{bmatrix} 0.72 & 0.60 & 0.67 & 1 \\ 1 & 1 & 1 & 0.67 \end{bmatrix}$$

Normalização de critérios de custo

 Um critério de custo pode sempre ser convertido num critério de beneficio. Usando por exemplo a transformação:

$$r_{ij} = \frac{1}{x_{ij}}$$

Obs. São possiveis outras transformações, no entanto neste curso usamos esta.

Normalização não monotónica

 Critérios não monotónicos podem-se transformar em monotónicos usando a seguinte transformação:

$$r_{ij} = e^{-\frac{z^2}{2}}$$

$$z = \frac{(x_{ij} - x_j^0)}{\sigma_j}$$
 x_j^0 O valor mais favorável.

Exemplo

Numero de quartos em casa	Z	exp(-z²/2)	Linear	Vectorial
3	-0.6324	0.8187	0.8187	0.5107
4*	0.0000	1.0000	1.0000	0.6238
5	0.6324	0.8187	0.8187	0.5107
6	1.2649	0.4493	0.4493	0.2803
7	1.8974	0.1653	0.1653	0.0317

Obs. 4* é o valor optimo de quartos.

Pesos entre Critérios

- Ordenação dos pesos
- Outros métodos...

Ordenação de Pesos

 Rearanjam-se os atributos/criterios numa ordem, listando os atributos mais importantes nos primeiros lugares e os menos nas ultimas posições desta lista.

$$w_{j} = \frac{\frac{1}{r_{j}}}{\sum_{k=1}^{n} \frac{1}{r_{k}}}$$

$$w_{j} = \frac{(n-r_{j}+1)}{\sum_{k=1}^{n} (n-r_{k}+1)}$$
(Reciproco)
(Soma)

Exemplo

Critérios

Ordenação

$$w_1 = \frac{\frac{1}{3}}{\frac{1}{3} + \frac{1}{2} + \frac{1}{1} + \frac{1}{4}} = 0.16$$

$$w_1 = \frac{(4 - 3 + 1)}{\sum_{k=1}^{4} (4 - r_k + 1)} = \frac{2}{10} = 0.2$$

$$w_1 = \frac{(4-3+1)}{\sum_{k=1}^{4} (4-r_k+1)} = \frac{2}{10} = 0.2$$

Modelos de Decisão Multiplo Atributo

- Simple Additive Weighting (SAW)
 Method
- Weighted Product Method (WPM)
- Analytic Hierarchy Process (AHP)
 Method

Simple Additive Weighted Method (SAW)

 Neste método são calculadas para cada alternativa um score de desempenho.

$$P_{i} = \sum_{j=1}^{n} w_{j} r_{ij}$$
 $P_{i} = \sum_{j=1}^{n} w_{j} (r_{ij})_{N}$

Onde os pesos obdecem a, $\sum_{j=1}^{n} w_j = 1$

Weighted Product Method (WPM)

 Este método é similar ao SAW, a diferença é que usamos a multiplicação ao invés da soma:

$$P_i = \prod_{j=1}^n \left[\left(r_{ij} \right)_N \right]^{w_j}$$

Onde os pesos obdecem a, $\sum_{j=1}^{n} w_j = 1$

Exemplo

	Preço	Tipologia	Vista	Local	Transportes
Apt.1	100,000	Т3	M.Bom	Bom	Médio
Apt.2	125,000	Т3	Médio	Médio	Bom
Apt.3	150,000	Т3	Fraca	Médio	M.Bom
Apt.4	120,000	Т3	Média	Fraco	Excelente

- 1. Normalize Linearmente.
- 2. Tome a decisão de acordo com o SAW

Obs. T0-T4 (1-5) Fraco-Excelente (1-5)

	Preço	Tipologia	Vista	Local	Transportes
Apt.1	10x10 ⁻⁶	4	4	3	2
Apt.2	8x10 ⁻⁶	4	2	2	3
Apt.3	6.7x10 ⁻⁶	4	1	2	4
Apt.4	8.3x10 ⁻⁶	4	2	1	5

Normalização Linear

	Preço	Tipologia	Vista	Local	Transportes
Apt.1	1	1	1	1	0.4
Apt.2	8.0	1	0.5	0.67	0.6
Apt.3	0.67	1	0.25	0.67	0.8
Apt.4	0.83	1	0.5	0.33	1

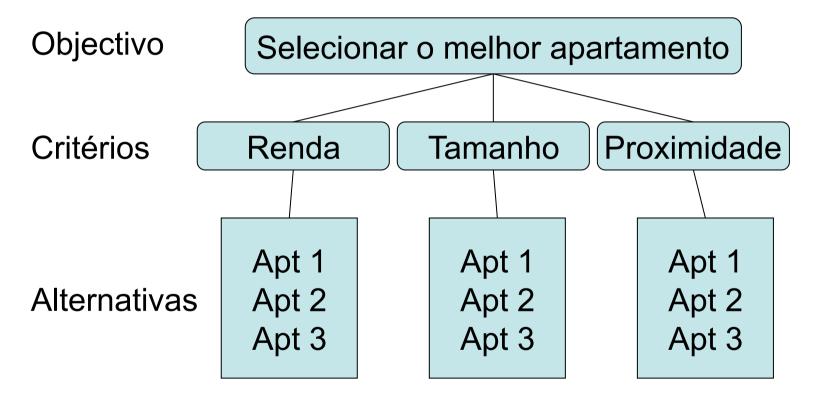
- Preço 1 \rightarrow W₁=1/2.28=0.44
- Tipologia 3 \rightarrow W₂=0.33/2.28=0.15
- Vista $-4 \rightarrow W_3 = 0.25/2.28 = 0.11$
- Local $-2 \rightarrow W_4 = 0.5/2.28 = 0.21$
- Transportes $-5 \rightarrow W_5=0.09$

Calculos Auxiliares:

SAW:

```
Apt.1 = 0.44*1+0.15*1+0.11*1+0.21*1+0.09*0.4=0.946

Apt.2=0.44*0.8+0.15*1+0.11*0.5+0.21*0.67+0.09*0.6=0.751


Apt.3=0.44*0.67+0.15*1+0.11*0.25+0.21*0.67+0.09*0.8=0.685

Apt.4=0.44*0.83+0.15*1+0.11*0.5+0.21*0.33+0.09*1=0.730
```

Analytic Hierarchy Process Method (AHP)

1º passo - Determine o *objectivo* e os *atributos*. Desenvolva uma estrutura hierarquica em que o *objectivo* está no topo os *atributos* no nivel seguinte e as *alternativas* no terceiro nivel.

Exemplo

Questão??

- Qual a melhor forma de atribuir pesos às alternativas assim como para os atributos?
- R: A resposta é que cognitivamente a forma mais consistente de fazer comparações é comparar aos pares atribuindo uma escala de pesos.

Passos do AHP

- 1. Fazer comparações aos pares.
- 2. Normalizar os julgamentos.
- 3. Verificar a consistência.
- 4. Sintetizar

Escala de comparação:

_	Extremamente preferido	9
_	Muito importante para extremamente	8
_	Muito importante	7
_	Importante para muito importante	6
_	Importante	5
_	Moderadamente a importante	4
_	Moderadamente	3
_	Igualmente a moderadamente	2
_	lgualmente preferido	1

 Fazer a comparação aos pares dos Critérios

Critérios

	Renda	Tamanho	Proximidade
Renda	1	5	6
Tamanho	1/5	1	1/3
Proximidade	1/6	3	1

 Fazer a comparação aos pares para cada atributo relativamente às alternativas.

- Renda
- Tamanho
- Proximidade

Renda

	Apt 1	Apt 2	Apt 3
Apt 1	1	4	1/3
Apt 2	1/4	1	1/7
Apt 3	3	7	1

Tamanho

	Apt 1	Apt 2	Apt 3
Apt 1	1	1/6	1
Apt 2	6	1	6
Apt 3	1	1/6	1

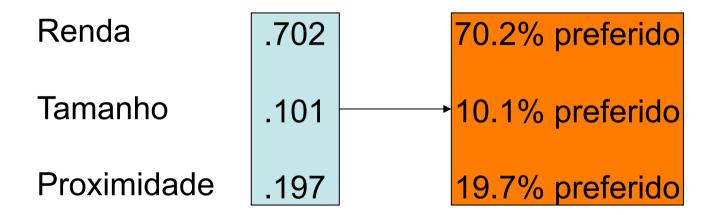
Proximidade

	Apt 1	Apt 2	Apt 3
Apt 1	1	5	8
Apt 2	1/5	1	3
Apt 3	1/8	1/3	1

2. Normalizar os Julgamentos

- Normalizar Calcular a prioridade de cada critério em termos da sua contribuição para o objectivo final
- 1º passo: Somar os valores de cada coluna das matrizes de comparação aos pares
- 2º passo: Dividir cada elemento pelo total de cada coluna
- 3º passo: calcular a média dos elementos para cada linha

2. Normalizar os Julgamentos

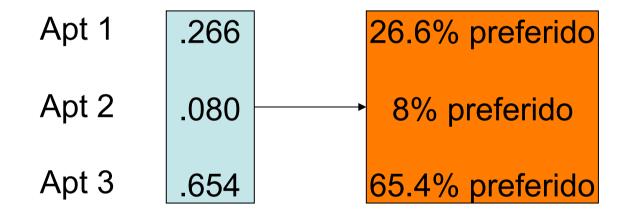

Critérios

	Renda	Tamanho	Proximidade
Renda	1	5	6
Tamanho	1/5	1	1/3
Proximidade	1/6	3	1
Soma	41/30	8	27/3

Critérios

	Renda	Tamanho Proximidade		Média
Renda	.732	.556	.818	.702
Tamanho	.146	.111	.046	.101
Proximidade	.122	.333	.136	.197

Critérios

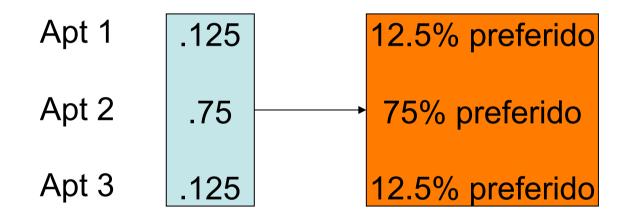

Renda

	Apt 1	Apt 2	Apt 3
Apt 1	1	4	1/3
Apt 2	1/4	1	1/7
Apt 3	3	7	1
Soma	17/4	12	31/21

Renda

	Apt 1	Apt 2 Apt 3		Média
Apt 1	.235	.334	.226	.266
Apt 2	.059	.083	.097	.080
Apt 3	.706	.583	.677	.654

Renda

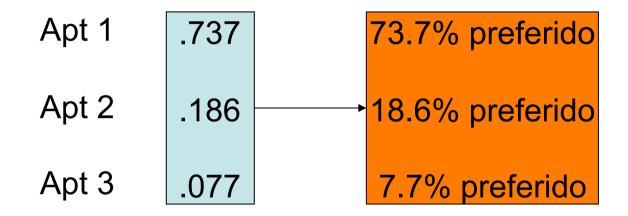

Tamanho

	Apt 1	Apt 2	Apt 3
Apt 1	1	1/6	1
Apt 2	6	1	6
Apt 3	1	1/6	1
Soma	8	8/6	8

Tamanho

	Apt 1	Apt 2	Apt 2 Apt 3	
Apt 1	.125	.125	.125	.125
Apt 2	.75	.75	.75	.75
Apt 3	.125	.125	.125	.125

Tamanho



Proximidade

	Apt 1	Apt 2	Apt 3
Apt 1	1	5	8
Apt 2	1/5	1	3
Apt 3	1/8	1/3	1
Soma	53/40	19/3	12

Proximidade

	Apt 1	Apt 2	Apt 2 Apt 3	
Apt 1	.755	.790 .667		.737
Apt 2	.151	.158	.25	.186
Apt 3	.094	.053	053 .083 .	

- Para cada uma das tabelas feitas com comparações aos pares convém ver a sua consistência, para isso faz-se um estudo de consistência.
- O método original do Saaty faz uso dos valores próprios para calcular a consistência, no nosso caso vamos usar um outro método que se aproxima a este, (estimamos o maximo dos valores próprios).

- 1º passo Multiplicar o vector com os pesos médios obtidos em *normalizar os julgamentos* pela matriz com os valores de comparações aos pares.
- 2º passo Dividir cada elemento do vector resultante do passo anterior pelo respectivo peso médio.
- 3º passo calcular a média dos valores obtidos no passo 2, λ_{max} .

• 4º passo - calcular a consistência:

$$CI = \frac{\lambda_{\max} - n}{n - 1}$$

Onde n é o numero de items a ser comparado

 5º passo - Calcular o racio de consistência:

$$CR = \frac{CI}{RI}$$

n	3	4	5	6	7	8
RI	.58	.90	1.12	1.24	1.32	1.41

RI é o Index Aleatório, que consiste na consistência de uma matriz gerada aleatóriamente. Como vemos depende do numero de items ser comparado.

 O racio de consistências (CR) inferiores a 0.10 são consideradas aceitáveis. Caso contrário ter-se que á de rever as matrizes de comparação aos pares.

Critérios

1º passo
$$.702 \cdot \begin{pmatrix} 1 \\ 1/5 \\ 1/6 \end{pmatrix} + .101 \cdot \begin{pmatrix} 5 \\ 1 \\ 3 \end{pmatrix} + .197 \cdot \begin{pmatrix} 6 \\ 1/3 \\ 1 \end{pmatrix} = \begin{pmatrix} 2.389 \\ .307 \\ .617 \end{pmatrix}$$

$$2.389/.702 = 3.403$$

$$.307/.101 = 3.04$$

$$.617/.197 = 3.132$$

$$\lambda_{\text{max}} = \frac{3.403 + 3.040 + 3.132}{3} = 3.192$$

$$CI = \frac{3.192 - 3}{2} = .096$$

4º passo
$$CI = \frac{3.192 - 3}{2} = .096$$
 5º passo $CR = \frac{CI}{RI} = \frac{.096}{.58} = .166$

rever

Renda

1º passo
$$.266 \cdot \begin{pmatrix} 1 \\ 1/4 \\ 3 \end{pmatrix} + .080 \cdot \begin{pmatrix} 4 \\ 1 \\ 7 \end{pmatrix} + .654 \cdot \begin{pmatrix} 1/3 \\ 1/7 \\ 1 \end{pmatrix} = \begin{pmatrix} .804 \\ .240 \\ 2.012 \end{pmatrix}$$

$$.804 / .266 = 3.023$$

$$.240/.080 = 2.999$$

$$2.012/.654 = 3.077$$

$$\lambda_{\text{max}} = \frac{3.023 + 2.999 + 3.077}{3} = 3.033$$

$$CI = \frac{3.033 - 3}{2} = .016$$

4º passo
$$CI = \frac{3.033 - 3}{2} = .016$$
 5º passo $CR = \frac{CI}{RI} = \frac{.016}{.58} = .028$

Tamanho

1º passo
$$.125 \cdot \begin{pmatrix} 1 \\ 6 \\ 1 \end{pmatrix} + .750 \cdot \begin{pmatrix} 1/6 \\ 1 \\ 1/6 \end{pmatrix} + .125 \cdot \begin{pmatrix} 1 \\ 6 \\ 1 \end{pmatrix} = \begin{pmatrix} .375 \\ 2.250 \\ .375 \end{pmatrix}$$

$$.375/.125 = 3$$

$$2.250/.750 = 3$$

$$.375/.125 = 3$$

$$\lambda_{\text{max}} = \frac{3+3+3}{3} = 3$$

$$CI = \frac{3-3}{2} = 0$$

$$CI = \frac{3-3}{2} = 0$$
 5° passo $CR = \frac{CI}{RI} = \frac{0}{.58} = 0$

Proximidade

1º passo
$$.737 \cdot \begin{pmatrix} 1 \\ 1/5 \\ 1/8 \end{pmatrix} + .186 \cdot \begin{pmatrix} 5 \\ 1 \\ 1/3 \end{pmatrix} + .077 \cdot \begin{pmatrix} 8 \\ 3 \\ 1 \end{pmatrix} = \begin{pmatrix} 2.283 \\ .564 \\ .231 \end{pmatrix}$$

$$2.283/.737 = 3.098$$

$$.564 / .186 = 3.034$$

$$.231/.077 = 3.002$$

$$\lambda_{\text{max}} = \frac{3.098 + 3.034 + 3.002}{3} = 3.045$$

$$CI = \frac{3.045 - 3}{2} = .022$$
 5° passo $CR = \frac{CI}{RI} = \frac{.022}{.58} = .038$

Sintetizar

 Depois de rever e aceitar as consistências passamos ao passo final.

Renda Tamanho Proximidade

Renda .702 Apt 1 .737 .266 .125 Tamanho Apt 2 .101 .080 .75 .186 Apt 3 Proximidade .197 .654 .125 .077

Sintetizar

Apt 1

34.4% preferido

Apt 2

16.9% preferido

Apt 3

48.7% preferido

Exercicio

1. Supor que queremos comprar um carro entre três alternativas.

	Carro A	Carro B	Carro C
Preço	€13,100	€11,200	€9,500
Consumo	6 L/100	8 L/100	10 L/100
Conforto	M. Bom	Bom	Normal
Estilo	4 portas	2 portas	2 portas

Exercicio

1.1 Desenhe a Hierarquia.

1.2 Utilize o método AHP para fazer a sua escolha e justifique cada passo dado?

ELECTRE

- ELECTRE (Elimination and Choice Translating Reality; English translation from French original)
- O método foi introduzido por Benayoun et al. em 1966)

Exemplo

	Preço	Tipologia	Vista	Local	Obras	Transportes
Apt.1	100,000	T3	Excelente	Excelente	M. Obras	Médio
Apt.2	125,000	Т3	Médio	Médio	Obras	Bom
Apt.3	150,000	T3	Fraca	Médio	Bom	M.Bom
Apt.4	120,000	T2	Média	Fraco	Novo	Excelente

Obs. T0-T4 (1-5) Fraco-Excelente (1-5) M.Obras-1, Obras-2, Bom-3, Novo-4

Exemplo

	Preço	Tipologia	Vista	Local	Obras	Transportes
Apt.1	100,000	4	5	5	1	2
Apt.2	125,000	4	2	2	2	3
Apt.3	150,000	4	1	2	3	4
Apt.4	120,000	3	2	1	4	5

Obs. T0-T4 (1-5) Fraco-Excelente (1-5) M.Obras-1, Obras-2, Bom-3, Novo-4

1º Passo: Normalização

- Passar critérios de custo a beneficio
- Normalizar vectorialmente:

$$x_{ij} = \frac{a_{ij}}{\sqrt{\sum_{k=1}^{m} a_{kj}^2}}$$

1º Passo: Normalização

	Preço	Tipologia	Vista	Local	Obras	Transportes
Apt.1	0.6	0.53	0.857	0.857	0.183	0.272
Apt.2	0.48	0.53	0.343	0.343	0.365	0.408
Apt.3	0.4	0.53	0.171	0.343	0.548	0.544
Apt.4	0.5	0.397	0.343	0.171	0.73	0.68

2º Passo: Normalização com Pesos

	Preço	Tipologia	Vista	Local	Obras	Transportes
Apt.1	0.3	0.106	0.086	0.086	0.009	0.014
Apt.2	0.24	0.106	0.034	0.034	0.018	0.02
Apt.3	0.2	0.106	0.017	0.034	0.027	0.027
Apt.4	0.25	0.079	0.034	0.017	0.037	0.034

Y=X*W W=(0.5, 0.2, 0.1, 0.1, 0.05, 0.05)^T

3º Conjuntos de Concordância e Discordância

Conjunto de Concordância para alternativas A_k e A_l:

$$C_{kl} = \left\{ j : y_{kj} \ge y_{lj} \right\}$$

Conjunto de Discordância para alternativas A_k e A_l:

$$D_{kl} = \left\{ j : y_{kj} < y_{lj} \right\}$$

3º Conjuntos de Concordância e Discordância

	Preço	Tipologia	Vista	Local	Obras	Transportes
Apt.1	0.3	0.106	0.086	0.086	0.009	0.014
Apt.2	0.24	0.106	0.034	0.034	0.018	0.02
Apt.3	0.2	0.106	0.017	0.034	0.027	0.027
Apt.4	0.25	0.079	0.034	0.017	0.037	0.034

$$C_{12} = \{1,2,3,4\} \qquad C_{21} = \{2,5,6\} \qquad D_{12} = \{5,6\} \qquad D_{21} = \{1,3,4\}$$

$$C_{13} = \{1,2,3,4\} \qquad C_{31} = \{2,5,6\} \qquad D_{13} = \{5,6\} \qquad D_{31} = \{1,3,4\}$$

$$C_{14} = \{1,2,3,4\} \qquad C_{41} = \{5,6\} \qquad D_{14} = \{5,6\} \qquad D_{41} = \{1,2,3,4\}$$

$$C_{23} = \{1,2,3,4\} \qquad C_{32} = \{2,4,5,6\} \qquad D_{23} = \{5,6\} \qquad D_{32} = \{1,3\}$$

$$C_{24} = \{2,3,4\} \qquad C_{42} = \{1,3,5,6\} \qquad D_{24} = \{1,5,6\} \qquad D_{42} = \{2,4\}$$

$$C_{34} = \{2,4\} \qquad C_{43} = \{1,3,5,6\} \qquad D_{34} = \{1,3,5,6\} \qquad D_{43} = \{2,4\}$$

4º Passo: Matrizes de Concordância e Discordância

Matrix de concordância c: $c_{kl} = \sum_{j \in C_{kl}} w_j$

Matrix de discordância d: $d_{kl} = \frac{\max_{j \in D_{kl}} |y_{kj} - y_{lj}|}{\max_{j} |y_{kj} - y_{lj}|}$

4º Passo: Matrizes de Concordância e Discordância

Weigths	0.5	0.2	0.1	0.1	0.05	0.05
	Preço	Tipologia	Vista	Local	Obras	Transportes
12	{1,2,3,4}	$C_{21} = \{2,5,6\}$		(– (0.9	.9 0.9
	{1,2,3,4} {1,2,3,4}	$C_{31} = \{2,5,6\}$ $C_{41} = \{5,6\}$	5 }	0.3	- 0	.9 0.4
	{1,,2,3,4} {2,3,4}	$C_{32} = \{2,4,5\}$ $C_{42} = \{1,3,5\}$,	0.3).4	- 0.3
$C_{24} = C_{34} = 0$		$C_{42} = \{1, 3, 5\}$ $C_{43} = \{1, 3, 5\}$,	0.1 (0.7 0	-

4º Passo: Matrizes de Concordância e Discordância

	Preço	Tipologia	Vista	Local	Obras	Transportes
D12	0.06	0	0.052	0.052	0.009	0.006
D13	0.1	0	0.069	0.052	0.018	0.013
D14	0.05	0.027	0.052	0.069	0.028	0.02
D23	0.04	0	0.017	0	0.009	0.007
D24	0.01	0.027	0	0.017	0.019	0.014
D34	0.05	0.027	0.017	0.017	0.01	0.007

$$D_{12} = \{5,6\} \qquad D_{21} = \{1,3,4\} D_{13} = \{5,6\} \qquad D_{31} = \{1,3,4\} D_{14} = \{5,6\} \qquad D_{41} = \{1,2,3,4\} D_{23} = \{5,6\} \qquad D_{32} = \{1,3\} D_{24} = \{1,5,6\} \qquad D_{42} = \{2,4\} D_{34} = \{1,3,5,6\} \qquad D_{43} = \{2,4\}$$

$$d = \begin{cases} - & 0.15 & 0.18 & 0.41 \\ 1 & - & 0.23 & 0.70 \\ 1 & 1 & - & 1 \\ 1 & 0.54 & - \end{cases}$$

5° Matrizes de Dominancia

Matriz de dominância para a concordância:

$$\bar{c} = \frac{1}{m(m-1)} \sum_{\substack{k=1 \ l=1 \ k \neq l \ l \neq k}}^{m} \sum_{l=1 \ k \neq l}^{m} c_{kl} \qquad f_{kl} = 1 \qquad c_{kl} \ge \bar{c}$$

$$f_{kl} = 0 \qquad c_{kl} < \bar{c}$$

m- é o numero de alternativas.

$$\bar{c} = \frac{4 \times 0.9 + 0.5 + 3 \times 0.3 + 0.4 + 2 \times 0.8}{4 \times (4 - 1)} = 0.56$$

$$f = \begin{pmatrix} - & 1 & 1 & 1 \\ 0 & - & 1 & 0 \\ 0 & 0 & - & 0 \\ 0 & 1 & 1 & - \end{pmatrix}$$

5° Matrizes de Dominancia

Matriz de dominância para a discordância:

$$\bar{d} = \frac{1}{m(m-1)} \sum_{\substack{k=1 \ l=1 \ k \neq l}}^{m} \sum_{\substack{l=1 \ l \neq k}}^{m} d_{kl} \qquad g_{kl} = 1 \qquad d_{kl} \leq \bar{d}
g_{kl} = 0 \qquad d_{kl} > \bar{d}$$

m- é o numero de alternativas.

6º Matrix dominância agregada

$$e_{kl} = f_{kl} \times g_{kl} \qquad f = \begin{pmatrix} - & 1 & 1 & 1 \\ 0 & - & 1 & 0 \\ 0 & 0 & - & 0 \\ 0 & 1 & 1 & - \end{pmatrix} \qquad g = \begin{pmatrix} - & 1 & 1 & 1 \\ 0 & - & 1 & 0 \\ 0 & 0 & - & 0 \\ 0 & 0 & 1 & - \end{pmatrix}$$

$$e = \begin{pmatrix} - & 1 & 1 & 1 \\ 0 & - & 1 & 0 \\ 0 & 0 & - & 0 \\ 0 & 0 & 1 & - \end{pmatrix}$$

Conclusões

- A1>>A2, A3, A4
- A2>>A3
- A4>>A3

 A Alternativa a escolher é a Apartamento 1.

TOPSIS

- TOPSIS (Technique for Order Preference by Similarity to Ideal Solution)
- Foi introduzido por Yoon e Hwang em 1980.

	Preço	Tipologia	Vista	Local	Obras	Transportes
Apt.1	100,000	Т3	Excelente	Excelente	M. Obras	Médio
Apt.2	125,000	Т3	Médio	Médio	Obras	Bom
Apt.3	150,000	Т3	Fraca	Médio	Bom	M.Bom
Apt.4	120,000	T2	Média	Fraco	Novo	Excelente

Obs. T0-T4 (1-5) Fraco-Excelente (1-5) M.Obras-1, Obras-2, Bom-3, Novo-4

	Preço	Tipologia	Vista	Local	Obras	Transportes
Apt.1	100,000	4	5	5	1	2
Apt.2	125,000	4	2	2	2	3
Apt.3	150,000	4	1	2	3	4
Apt.4	120,000	3	2	1	4	5

Obs. T0-T4 (1-5) Fraco-Excelente (1-5) M.Obras-1, Obras-2, Bom-3, Novo-4

1º Passo: Normalização

- Manter critérios de custo e de beneficio
- Normalizar vectorialmente:

$$x_{ij} = \frac{a_{ij}}{\sqrt{\sum_{k=1}^{m} a_{kj}^2}}$$

1º Passo: Normalização

	Preço	Tipologia	Vista	Local	Obras	Transportes
Apt.1	0.400	0.53	0.857	0.857	0.183	0.272
Apt.2	0.500	0.53	0.343	0.343	0.365	0.408
Apt.3	0.600	0.53	0.171	0.343	0.548	0.544
Apt.4	0.480	0.397	0.343	0.171	0.73	0.68

2º Passo: Normalização com Pesos

	Preço	Tipologia	Vista	Local	Obras	Transportes
Apt.1	0.2	0.106	0.086	0.086	0.009	0.014
Apt.2	0.25	0.106	0.034	0.034	0.018	0.02
Apt.3	0.3	0.106	0.017	0.034	0.027	0.027
Apt.4	0.24	0.079	0.034	0.017	0.037	0.034

Y=X*W W=(0.5, 0.2, 0.1, 0.1, 0.05, 0.05)^T

3º Passo Determinar as soluções ideais positiva e negativa

$$A^{p} = \left\{ (\max_{i}(v_{ij}) \mid j \in J^{b}), (\min_{i}(v_{ij}) \mid j \in J^{c}), i = 1, 2, ..., 6 \right\}$$

$$A^{n} = \left\{ (\min_{i}(v_{ij}) \mid j \in J^{b}), (\max_{i}(v_{ij}) \mid j \in J^{c}), i = 1, 2, ..., 6 \right\}$$

Jb – Critérios de beneficio

J^c – Critérios de custo

3º Passo Determinar as soluções ideais positiva e negativa

	Preço	Tipologia	Vista	Local	Obras	Transportes
Apt.1	0.2	0.106	0.086	0.086	0.009	0.014
Apt.2	0.25	0.106	0.034	0.034	0.018	0.02
Apt.3	0.3	0.106	0.017	0.034	0.027	0.027
Apt.4	0.24	0.079	0.034	0.017	0.037	0.034

$$A^p = \{0.2, 0.106, 0.086, 0.086, 0.037, 0.034\}$$

$$A^{n} = \{0.30, 0.079, 0.017, 0.017, 0.009, 0.014\}$$

4ºPasso Medidas de separação

$$S_i^p = \sqrt{\sum_{i=1}^6 (v_{ij} - v_j^p)^2}$$

$$S_i^n = \sqrt{\sum_{i=1}^6 (v_{ij} - v_j^n)^2}$$

	Sp	Sn
S1	0.034	0.142
S2	0.092	0.063
S3	0.133	0.039
S4	0.099	0.071

5ºPasso Semelhança com a solução Ideal

$$C_i^p = \frac{S_i^n}{S_i^p + S_i^n}$$

C1	0.807
C2	0.406
C3	0.227
C4	0.418

A escolha é a alternativa Apt.1

Conclusões Gerais

- Aprendemos nesta parte do curso os seguintes métodos Multi-Atributo:
 - SAW
 - WPM
 - AHP
 - ELECTRE
 - TOPSIS

Exercicio Geral

Applicants	GRE	GPA	College Rating	Recommen dation Rating	Interview Rating
Alfred	690	3.1	9	7	4
Beverly	590	3.9	7	6	10
Calvin	600	3.6	8	8	7
Diane	620	3.8	7	10	6
Edward	700	2.8	10	4	6
Fran	650	4.0	6	9	8

Todos os critérios são de beneficio.

Exercicio Geral

 Aplique todos os métodos aprendidos na aula à Matrix de decisão.

Este Exercicio segue para avaliação!!!

Decisão Multiplo Atributo Difusa

- Existem duas fases na decisão multiplo atributo difusa:
 - 1. A agregação do grau de satisfação para todos os critérios por alternativa (rating).
 - 2. Ranking das alternativas com respeito ao grau de satisfação da agregação global.

Table 7.5. Objective data of the machinability attributes of example 7.2.2 (from Enache et al., 1995; with permission from CIRP)

Work-tool combination	Tool wear rate (m/min)	Specific energy consumed (N)	Surface roughness (µm)
1	0.061	219.74	5.8
2	0.093	3,523.72	6.3
3	0.064	2,693.21	6.8
4	0.028	761.46	5.8
5	0.034	1,593.48	5.8
6	0.013	2,849.15	6.2

1: TiAl6V4-P20; 2: TiMo32-P20; 3: TiAl5Fe2.5-P20; 4: TiAl6V4-P20 (TiN); 5: TiAl6V4-K20; 6: TiAl6V4-K20* (K20* is a special form of tool without top in contrast with other tools). Cutting conditions: dry, cutting speed-150 m/min, feed-0.15 mm/rev, and depth of cut-0.5 mm

 Todos os critérios/atributos são de custo de modo que temos de os transformar para beneficio e depois proceder à normalização que podemos usar neste caso a normalização pelo máximo e assim obter o grau de satisfação para cada critério.

Table 7.6. Normalized data of the attributes of example 7.2.2

Work-tool combination	TW	SE	SR
1	0.2131	1	1
2	0.1398	0.0624	0.9206
3	0.2031	0.0816	0.8529
4	0.4643	0.2886	1
5	0.3824	0.1379	1
6	1	0.0771	0.9355

Agregação:

- Fase 1:
$$R_i = t - norm(r_{ij})$$

- Fase 2:
$$D=t-conorm(R_i)$$

- Se usarmos t-norm=min() e t-conorm=max() ficamos:
 - $-R_1=min(0.2131,1,1)=0.2131$
 - $-R_2=0.0624$
 - $-R_3=0.0816$
 - $-R_4=0.2886$
 - $-R_5=0.1379$
 - $-R_6=0.0771$
- D=max(R_i)=0.2886 => Alternativa 4

Exercicio

- Use o mesmo exemplo mas use como t-norm=ab/(a+b-ab) (Hamacher) e tconorm=max().
- Mesmo mas t-norm=max(0,a+b-1)
 (Schweizer & Sklar) e t-conorm=max
 ().
- 3. Compare com o SAW e WPM e AHP.

Outro Exemplo

- Suponhemos agora que queremos escolher um candidado para um emprego em função de um candidato ideal.
- 1. Primeiro escolhemos os critérios ou atributos são:
 - Altura do Candidado (alto,médio,baixo)
 - Sexo (M,F)
 - Inteligência (muito inteligente, inteligente)

	Altura	Sexo	Inteligencia
P ₀	alto	M	Int.
C ₁	alto	F	M. Int.
C_2	medio	M	Int.
C ₃	alto	М	M. Int.

2. Escolhemos uma função de pertença que relacionam os candidatos com o candidato perfeito P₀.

{alto/0.8,médio/0.7,baixo/0.0,M/1.0,F/0.0,M. Int./0.1,Int./0.7}

	Altura	Sexo	Inteligencia
P ₀	1	1	1
C ₁	8.0	0.0	0.1
C ₂	0.7	1.0	0.7
C ₃	0.8	1.0	0.1

- Existem varias formas de calcular os Rantings:
 - Hamming distance: $H_i = 1 \frac{1}{m} \sum_{j=1}^{m} |\mu_j^0 \mu_j^i|$

– Similarity index:

$$S_{i} = 1 - \frac{\sum_{j=1}^{m} |\mu_{j}^{0} - \mu_{j}^{i}|}{m + \sum_{j=1}^{m} \mu_{j}^{0} \wedge \mu_{j}^{i}}$$

	Altura	Sexo	Int.	Hamming
P_0	1	1	1	
C ₁	8.0	0.0	0.1	0.3
C_2	0.7	1.0	0.7	0.8
C ₃	8.0	1.0	0.1	0.6

Logo o Candidado a escolher seria o C₂.

Exercicios

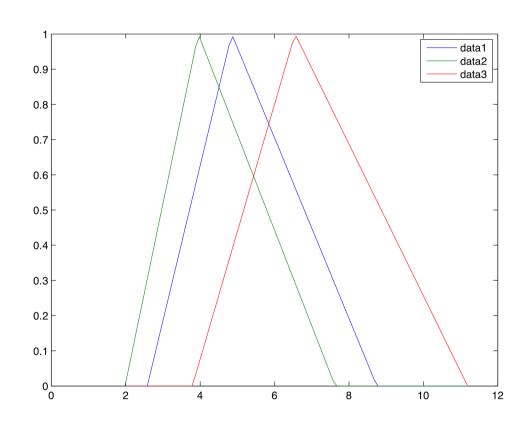
1. Neste caso pretendemos como objectivo escolher uma casa.

	vista	tipologia	zona	preço	distância
P ₀	boa	Т3	boa	bom	perto
C ₁	boa	T2	média	médio	longe
C_2	má	Т3	média	bom	perto
C_3	média	T1	boa	caro	perto
C ₄	boa	T2	boa	bom	média

{boa/0.8,média/0.5,/má/0.3,T3/0.9,T2/0.7,T1/0.1,boa/0.9, média/0.4,má/0.0,bom/0.9,médio/0.6,caro/0.1,perto/0.5, média/0.4,longe/0.1}

Exercicios

- 1.1 Fazer o Ranking com a Distância de Hamming.
- 1.2 Fazer o Ranking com o Similarity Index


- No SAW normal faziamos uma média ponderada com os pesos dos critérios e os valores de cada critério.
- No Fuzzy SAW é a mesma coisa mas com numeros difusos (Fuzzy Numbers).
- Depois achamos o maximo dos numeros difusos. Para isso temos de saber comparar numeros difusos.

C1	C2	C3	C4
(0.13, 0.20, 0.31)	(0.08, 0.15, 0.25)	(0.29, 0.40, 0.56)	(0.17, 0.25, 0.38)

	C1	C2	C3	C4
A1	(3.00,4.00,5,00)	(5.00,6.00,7.00)	(5.00,6.00,7.00)	(2.00, 3.00, 4.00)
A2	(6.00,7.00,8.00)	(5.00,6.00,7.00)	(0.50, 1.00, 2.00)	(4.00,5.00,6.00)
A3	(4.00,5.00,6.00)	(3.00,4.00,5.00)	(7.00,8.00,9.00)	(6.00,7.00,8.00)

```
P1=(0.13,0.20,0.31)x(3.00,4.00,5.00) + (0.08,0.15,0.25)x(5.00,6.00,7.00) + (0.29,0.40,0.56)x(5.00,6.00,7.00) + (0.17,0.25,0.38)x(2.00,3.00,4.00)=
=(2.58,4.85,8.75)
P2=(1.98,3.95,7.63)
```

• P3=(3.79,6.55,11.19)

A alternativa a escolher é:

- e21=e31=e32=1
- Q=0.90
- Todas as interseções estão a baixo de Q.
- A alternativa é A3.

Exercicio

	vista	tipologia	zona	preço	distância
Casa ₁	boa	T2	média	médio	longe
Casa ₂	má	Т3	média	bom	perto
Casa ₃	média	T1	boa	caro	perto
Casa ₄	boa	T2	boa	bom	média

Pesos	Vista	Tipologia	Zona	Preço	Distância
	(0.1,0.2,0.3)	(0.1,0.2,0.3)	(0.05, 0.2, 0.3)	(0.2,0.3,0.4)	(0.0,0.1,0.2)