

FCTUC DEPARTAMENTO DE ENGENHARIA CIVIL FACULDADE DE CIÊNCIAS E TECNOLOGIA UNIVERSIDADE DE COIMBRA

Planeamento de redes rodoviárias: Aplicações em Portugal e no Brasil

Workshop Optimização de Transportes Coimbra – 26 de Novembro de 2010

Bruno Santos – FCTUC António Antunes – FCTUC

Outline

- Introduction
- Research Goal
- The Proposed Approach
- The Optimization Model
- Solution Techniques
- Objectives and Measures
- Results
- Conclusion
- Future Research

Introduction

- Modern economies are highly dependent upon transportation systems.
- Due to its high flexibility and the unique capability to provide door-to-door transportation, **roads play a vital role** in the transportation systems.
- **Road network plans** are typically developed following a **trial-and-error approach**.
- Although widely studied, **optimization-based approaches** have rarely (or never) been used in practical applications.

Introduction

What is the problem about?

Introduction

The Road Network Design Problem (RNDP)

- The problem consists of:
 - defining the best investment decisions on the expansion of a street and highway system in response to a growing demand (Yang and Bell 1998).
- Decisions can include:
 - the **improvement** of existing roads (Continuous RNDP);
 - the **addition** of new roads to the existing road network (Discrete RNDP).

Introduction

Bibliography

- RNDP models:
 - Discrete RNDP:
 - LeBlanc (1975); Boyce and Janson (1980); Drezner and Salhi (2002); Kim et al. (2008).
 - Continuous RNDP:
 - Abdulaal and LeBlanc. (1979); Friesz et al. (1992); Meng et al. (2001); Gao et al. (2007).
- RNDP objectives:
 - User costs and construction costs:
 - Friesz et al. (1993); Tzeng and Tsaur (1997).
 - Robustness/reliability:
 - Lo and Tung (2003); Ukkusuri et al. (2007).
 - Equity:
 - Meng and Yang (2002); Feng and Wu (2003).
 - CO2 emissions:
 - Cantarella and Vitetta (2006).
 - Accessibility:
 - Antunes et al. (2003).

Introduction

Long-term planning of interurban road networks

- The weaknesses of the planning approach that underlies traditional RNDP:
 - does not take into account the long-term influence of the investments on travel demand;
 - road capacity is assumed continuous;
 - does not take into account the planning framework typically used in practice;
 - does not take into account the fact that road network investments are aimed at fulfilling **objectives of various types**.

Research Goal

- <u>Goal:</u>
 - To address the RNDP in such a way that decision makers and practitioners would be more likely to use it.

• Objectives:

1.To **develop a multi-objective approach** for long-term interurban road network planning and to test the influence that each planning objective will have on the solutions.

2.To develop efficient techniques to solve the model.

3.To **develop a computer program** for implementing the multiobjective approach

The Proposed Approach

Main principles:

- Planning decisions are defined according to a **road hierarchy**:
 - the construction of new road links of a given level (type);
 - the upgrading of existing road links to a higher level.
- Efficiency, robustness, equity, and energy consumption objectives are simultaneously taken into account.
- **Travel demand is elastic** with road network changes.
- Planning decisions are consistent with the planning framework adopted in the **Highway Capacity Manual**.

The Proposed Approach

• Schematic representation of the approach

The Optimization Model

Upper-level Problem – Road improvements decisions: ٠

$$\max V = w_Z \times \frac{Z - Z_0}{Z_B - Z_0} + w_E \times \frac{E - E_0}{E_B - E_0} + w_R \times \frac{R - R_0}{R_B - R_0}$$

subject to:

$$Z = \eta(\mathbf{y}) \text{ and } E = \mu(\mathbf{y}) \text{ and } R = \xi(\mathbf{y})$$

$$\sum_{m \in \mathbf{M}_{l}} y_{lm} = 1, \forall l \in \mathbf{L}$$

$$\sum_{m \in \mathbf{M}_{l}} \sum_{q \in l_{m}} y_{lm} \leq b$$

$$I(3) \text{ Single decision per link}$$

$$\sum_{l \in \mathbf{L}} \sum_{m \in \mathbf{M}_{l}} e_{lm} y_{lm} \leq b$$

$$I(4) \text{ Budget constraint}$$

$$T_{ij} = \theta \times P_{i} \times P_{j} \times c_{ij}(\mathbf{y})^{-\beta}, \forall i, j \in \mathbf{N}$$

$$Q_{l} = \sum_{i \in N} \sum_{j \in N} T_{ij} \times x_{lij}, \forall l \in \mathbf{L}$$

$$Q_{l} \leq \sum_{m \in \mathbf{M}_{l}} Q_{\max_{m}} \times y_{lm}, \forall l \in \mathbf{L}$$

$$Y_{lm} \in \{0,1\}, \forall l \in \mathbf{L}, m \in \mathbf{M}_{l} \text{ and } a_{i}, T_{ij}, Q_{l} \geq 0, \forall i, j \in \mathbf{N}, \forall l \in \mathbf{L}$$

$$I(2) \text{ Objectives measures}$$

$$I(3) \text{ Single decision per link}$$

$$I(4) \text{ Budget constraint}$$

$$I(5) \text{ Demand function}$$

$$I(6) \text{ Traffic on each link}$$

$$I(7) \text{ LOS constraint}$$

[1] Objective function (maximization of weighted normalized values)

The Optimization Model

 Lower-level Problem – Driver's route choice for each (r, d) pair of centers:

$$\min c_{rd} = \sum_{l \in \mathbf{L}m \in \mathbf{M}_l} z_{lm} \times y_{lm} \times x_{lrd}$$

[8] Objective function (minimization of travel costs)

subject to:

$$\sum_{l \in \mathbf{R}(k)} x_{lrd} = v_{krd}, \ \forall k, r, d \in \mathbf{N}, \ \mathbf{R}(k) = \{(i, j) \in \mathbf{L} : i = k \lor j = k\}$$

$$v_{krd} = \begin{cases} 1, \ k = r \lor k = d \\ 2 \times u_{krd}, \ k \in \mathbf{N} \setminus \{r, d\} \end{cases}$$
[9,10] Continuous optimum route

$$u_{krd}, x_{lrd} \in \{0,1\}, \ \forall k, r, d \in \mathbb{N}, l \in \mathbb{L}$$

$$v_{krd} \in \{0,1,2\}, \forall k,r,d \in \mathbb{N}$$

Solution Techniques

Three heuristics were developed:

- A Local Search Algorithm (LSA),
- A Variable Neighborhood Search Algorithm (VNSA), and
- An Enhanced Genetic Algorithm (EGA).

Santos, B., Antunes, A. and Miller, E. (2005) "Solving an Accessibility Maximization Road Network Design Model: A Comparison of Heuristics". Advanced OR and AI Methods in Transportation, Proceedings pp. 692-697, Poznan, Poland, 13-16 September, 2005.

Solution Techniques

• Enhanced Genetic Algorithm (EGA)

Solution Techniques

The three heuristics were tested on a sample of randomly generated test networks.

- <u>Solution quality</u>:
 - **20 small networks** (10-24 links) exact optimum solution known:
 - LSA found 4 of the 20 optimum solutions
 - VNSA found 8 of the 20 optimum solutions
 - EGA found 17 of the 20 optimum solutions
 - **40 larger networks** heuristics compared between them:
 - LSA never found the best solution and was, on average, 1.01% worse
 - VNSA found 9 of the 40 best solutions and was, on average, 0.23% worse
 - EGA found 32 of the 40 best solutions and was, on average, 0.14% worse
- <u>Computational effort</u>:
 - The **LSA** is **more than 10 times faster** than the other algorithms for small networks (10-39 links).
 - The EGA:
 - much slower than the other heuristics for smaller size networks
 - for networks with 70 links or more, became faster than the VNSA

Example of evolution of solution fitness during the application of the heuristics 3.3 3.288 3.245 3.279 3.2 3.1 **Solution Fitness** 3.0 2.9 2.8 2.7 2.6 2.5 2.4 0 20 30 50 70 80 10 40 60 90 100 110 Iteration EGA VNSA LSA

Objectives and Measures

- Efficiency:
 - Weighted accessibility
 - Average speed
 - Consumer's surplus
 - Weighted travel costs to major centers (capitals)

• Equity:

- Accessibility of centers with lower accessibility
- Gini index
- Theil's inequality index
- Robustness:
 - Spare capacity
 - Evacuation capacity
 - Network vulnerability

• Energy consumption

Average fuel consumption (maximum service speed)

Workshop APDIO, Coimbra – November 26, 2011

Planeamento de redes rodoviárias: Aplicações em Portugal e no Brasil

Results

Random Networks

• Randomly generated networks of different sizes were used to analyze the impact of considering equity objectives.

Santos, B., Antunes, A., Miller, E. (2008) "Integrating Equity Objectives in a Road Network Design Model". Transportation Research Record - Issue Number: 2089.

Centro Region Road Network (PT)

• The main road network of the Centro Region was improved in the last 20 years. How to improve the secondary road network?

Centro Region Road Network (PT)

Centro Region Road Network (PT)

Centro Region Road Network (PT)

• In order to compare pairs of road network solutions, the following similarity index was considered:

$$S(u,v) = \frac{\sum_{l \in L} L_l \times \Delta_l^{uv}}{\sum_{l \in L} L_l}$$

		Current	Solution			
		Network	1	2	3	4
Current Network			0.390	0.392	0.399	0.400
Solution	1	0.390		0.400	0.272	0.279
	2	0.392	0.400		0.368	0.348
	3	0.399	0.272	0.368		0.201
	4	0.400	0.279	0.348	0.201	

NOTE: Solution 1 - average speed, Gini Index, and fuel consumption; Solution 2 - weighted travel costs, Gini Index, and fuel consumption; Solution 3 - consumers' surplus gains, Gini Index, and fuel consumption; Solution 4 -.weighted aggregated accessibility, Gini Index, and fuel consumption.

- The "accessibility" solution is similar with the "consumer's surplus" solution and it is the most different from the initial network.
- The two **less similar** solutions are obtained for the **weighted travel cost** and the **average speed** measures (despite being two solutions with similar lengths for roads of the same type).

Case Study – Paraná (Brazil)

• Improvement of the road network of the state of Paraná (Brazil)

Case Study – Paraná (Brazil)

• Solution for demand forecasting assuming current trends

Case Study – Paraná (Brazil)

• Solution for demand forecasting assuming current trends

Solution for accessionity and equity maximization

Case Study – Paraná (Brazil)

• Solution for demand forecasting assuming current trends

Solution for accessibility and robustness maximization

Case Study – Paraná (Brazil)

• Solution for demand forecasting assuming current trends

Solution for accessibility, equity, and robustness maximization

Solution Robustness

• Difference in solutions when demand is **reduced in 20**%:

Solution with less 20% of budget – solution with full budget

Solution Robustness

• Difference in solutions when demand is **increased in 20**%:

Solution with more 20% of budget – solution with full budget

Conclusion

- The proposed approach provides a multi-objective perspective to the RNDP for the long-term evolution of a national or regional road network;
- The approach has some innovative features (e.g., multilevel, uses the concept of level of service, demand elastic);
- Three to four measures were used to assess each optimization objective (efficiency, equity, and robustness);
- Three heuristic methods were used and compared (LSA, VNSA, and EGA);
- A user-friendly computer program, OptRoad, was developed.

Conclusion

- The proposed approach is aimed to help policy-makers in their strategic decisions regarding the long term (say, 20 years) evolution of their national and regional road networks.
- This approach can be more easily accepted by practitioners because:
 - It is compatible with the HCM;
 - It assumes a road hierarchy;
 - It considers the long-term influence on demand;
 - It considers a multi-objective perspective.
- At this stage, the approach is already useful in practical applications:
 - it can give meaningful results to long-term interurban road network planning problems, and provide a good starting point for the study of detailed solutions.

Future research

- Integration of rail transportation (regular and high-speed rail) \rightarrow a multi-modal network design problem;
- Separation between passenger and freight traffic;
- Inclusion of other traffic assignment approaches (metropolitan networks → parallel user equilibrium traffic assignment);
- Definition of a multi-period investment program;
- Inclusion of (internal) investment financing analysis (build-operate-transfer schemes).

FCTUC DEPARTAMENTO DE ENGENHARIA CIVIL

FACULDADE DE CIÊNCIAS E TECNOLOGIA UNIVERSIDADE DE COIMBRA

Planeamento de redes rodoviárias: Aplicações em Portugal e no Brasil

Workshop Optimização de Transportes Coimbra – 26 de Novembro de 2010

> **Bruno Santos – FCTUC** E-mail: bsantos@dec.uc.pt