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Abstract 

 
In this paper a dynamic location problem is formulated that considers the possibility 

of expanding or reducing the maximum available capacity at any given location during 
the planning horizon. The expansion (or reduction) of available capacity at a given 
location is achieved through the opening (or closure) of one or more facilities with 
different discrete capacities. The mixed-integer linear model developed considers fixed 
costs for opening the first facility at any location, plus additional fixed costs for every 
open facility in a location with already existing facilities. It is possible to open, close and 
reopen any facility at any location more than once during the planning horizon. It is also 
possible to consider different assignment costs depending on the size of the facility that is 
assigned to each client. This is important, because, in general, smaller facilities have 
smaller fixed costs but greater unitary operating costs. A primal-dual heuristic is 
developed that is able to find primal feasible solutions to the problem here described, and 
computational results are presented. 

 
 

Resumo 
Neste artigo considera-se um problema de localização dinâmica, em que é possível 

aumentar ou reduzir a capacidade máxima disponível numa dada localização, num 
determinado período de tempo, através da abertura ou fecho de um ou mais 
equipamentos, de iguais ou diferentes capacidades. O modelo de programação linear 
inteira mista desenvolvido considera os custos fixos de abrir o primeiro equipamento 
numa dada localização, e custos fixos associados à localização de outros equipamentos, 
para além do primeiro. É possível abrir, fechar e reabrir qualquer equipamento em 
qualquer localização, mais do que uma vez durante o horizonte temporal considerado. É 
também possível considerar custos de afectação que podem variar consoante a dimensão 
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do equipamento. Foi desenvolvida uma heurística primal-dual capaz de resolver este 
problema, que aqui se descreve, e apresentam-se alguns resultados computacionais. 

 
Keywords: dynamic location problems, primal-dual heuristics, capacity planning 
 
 

 
 

1 Introduction 
 
Capacitated location problems have been widely studied in the literature (see, for 
instance, Guignard and Spielberg, 1979, Jacobsen, 1983; Christofides and Beasley, 1983; 
Van Roy, 1986; Beasley, 1988; Cornuejols et al., 1991; Sridharan, 1995). Dynamic 
location problems have also been studied (see, for instance, Van Roy and Erlenkotter, 
1982; Saldanha da Gama and Captivo, 2002). It is interesting to note that a capacitated 
dynamic location problem is, in essence, a capacity expansion problem: facilities are open 
in different time periods, increasing the total available capacity, in order to serve a 
(generally) increasing demand. In this paper, the authors study a problem where the 
expansion of capacity is explicitly considered and is achieved not only through the 
location of facilities at new sites but also through the location of facilities that will 
increase the already existing capacity at a given site (as in Shulman, 1991). Each facility 
capacity has to be chosen from a finite (small) set of feasible capacities, similar to what is 
described in Lee (1991) and Mazzola and Neebe (1999). Lee extends the classical 
capacitated location problem and considers a multiproduct capacitated facility location 
problem in which each facility capacity has to be chosen from a given set of admissible 
capacities. The author solves the problem using an algorithm based on a Benders’ 
decomposition. Sridharan (1991) studies the problem of locating and choosing the size of 
the facility, by solving a capacitated location problem with side constraints (guaranteeing 
that at most one facility is located at each site). The problem is solved using a lagrangean 
heuristic. Mazzola and Neebe (1999) study a similar problem and develop a branch and 
bound algorithm. Ghiani et al. (2002) study the problem of locating capacitated facilities, 
allowing several identical facilities to be located at the same site. The problem was 
motivated by a polling station location problem in an Italian Municipality. The authors 
solve the problem using a Lagrangean Heuristic. 
As far as we know, in most of the references dealing explicitly with capacity expansions, 
they can be continuously incremented. 
Hinomoto (1965) studies the problem of capacity expansion of a productive system, 
assuming the capacity can be expanded by the addition of facilities in discrete steps, and 
the size of a facility can be treated as a continuous factor. Erlenkotter (1975) develops two 
approaches to deal with capacity planning for large multilocation systems: an 
approximate approach based on an equivalent cost measure and an incomplete dynamic 
programming approach to systematically improve the approximate solution. The author 
describes an application to a real problem (India’s nitrogenous fertilizer industry). Fong 
and Srinivasan (1981a) formulate the problem of continuous capacity expansion as a 
dynamic discrete time location mixed integer programming problem. The authors develop 
a heuristic to tackle the problem. In the sequel of this paper (Fong and Srinivasan, 
1981b), the authors extend the problem considering a fixed cost if a capacity expansion 
takes place at a given location plus a cost proportional to the size of the expansion. 
Freindenfelds (1981a) considers the capacity expansion problem in which there are two 
types of demand and two types of facilities. The author considers that the capacity can be 
increased in a continuum of sizes, at a cost that does not depend either on time or on 
previous expansion decisions. In his book (Freindenfelds, 1981b), the author introduces a 
series of capacity expansion analytical models and applications, emphasizing the real 
capital investment decisions involved in the establishment of new productive capacity. 
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Smith (1981) generalizes the work of Manne1, presenting an efficient algorithm that solves 
the deterministic capacity problem considering a finite planning horizon2

2 The Proposed Mathematical Model 

. 
In 1982, Luss publishes a survey of the existing literature on capacity expansion 
problems. The author calls the readers attention to the lack of existing literature dealing 
with dynamic capacity expansion problems. In this survey the author considers both 
single and multi-facility location problems, with finite or infinite horizon time planning2. 
Min (1988) studies the problem of dynamic expansion and relocation of capacitated public 
facilities, considering multiple objectives. The author formulates the problem as a mixed 
integer goal programming model in a fuzzy decision environment. The problem is 
illustrated by considering the real case of expanding and relocating public libraries in the 
Columbus metropolitan public library system. 
Shulman (1991) formulates the problem of dynamically locating and expanding the 
capacity of facilities. The author considers a small set of feasible expansion sizes (capacity 
expansion is achieved by dynamically locating more than one facility at a given location), 
and develops two algorithms: one deals with the more general problem that allows several 
facilities of different capacities to be located at the same site; the other solves the special 
case where it is only possible to locate facilities of the same size at each location. 
The problem studied in this paper considers the situation where capacity expansion is 
achieved by locating additional facilities and the reduction of capacity is achieved by 
closing existing facilities. There is a finite (small) set of feasible capacities for the facilities 
to be located. The major differences between the problem here presented and the 
problems studied in the literature are the possibility of reducing the capacity at any time 
period (most of the problems studied only consider the possibility of capacity increasing), 
the possibility of locating several facilities of different sizes in the same location and also 
the possibility of a facility being open, closed and reopen more than once during the 
planning horizon. Canel et al. (2001) consider the possibility of a service being open, 
closed and reopen more than once. Nevertheless, the authors do not differentiate between 
open and reopen fixed costs (which, in most cases, are clearly different), and present a 
non-linear objective function. In the model here presented it is also possible to 
differentiate the operating costs of the different facilities. 
According to Luss (1982) the major decisions in capacity expansion problems are: 
expansion sizes, expansion times and expansion locations. In this problem, one can say 
that the major decisions in capacity expansion and reduction are: expansion and 
reduction sizes, times and locations.  
In this paper, the problem is formulated as a mixed-integer linear problem, and a 
primal-dual heuristic is described that can find primal feasible solutions. The behaviour 
of the primal-dual heuristic is compared with the behaviour of a general solver (Cplex). 
This work was motivated by the problem of locating transfer stations in a solid waste 
treatment system (see, for instance, Wirasinghe and Waters, 1983). Most transfer stations 
are composed by one or more equipments that can take one of a small set of different 
sizes. Each equipment has fixed and operating costs that are, usually, directly and 
inversely proportional (respectively) to its capacity.  
In the next section the model developed is presented. In section 3, the dual problem of its 
linear relaxation is formulated. In section 4 the primal-dual heuristic (based on the work 
of Erlenkotter (1978) and Van Roy and Erlenkotter (1982)) is described. In section 5 some 
computational results are shown and, in the last section, some conclusions and future 
work directions are drawn. 
 
 

 

                                              
1 A. S. Manne (1961), Capacity Expansion and Probabilistic Growth, Econometrics, 29 
2 In the paper’s context, planning horizon refers to the time period during which the additional capacity can be 
used. It can be interpreted as the lifetime of a facility. In this research report, the planning horizon is interpreted 
as the time interval, explicitly considered, in which it is possible to change the configuration of facility locations. 
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Consider the following definitions: 
J = {1,...,n} set of indices corresponding to the clients’ locations; 
I = {1,...,m} set of indices corresponding to facilities’ possible locations; 
S= {1,...,q} set of indices corresponding to facilities’ possible dimensions, ordered by 

ascending order of the corresponding capacities; 
T = number of time periods considered in the planning horizon; 

t

ijsc = cost of fully assigning client j to a facility of dimension s located at i in period t; 

istFA = fixed cost of opening a facility of dimension s at i at the beginning of period t, and 

closing the facility at the end of period   (the facility will be in operation from the 
beginning of t to the end of  ), knowing that this is the first facility located at i; 

istFR = unitary fixed cost of locating a facility of dimension s at i at the beginning of 

period t, and closing it at the end of period   (the facility will be in operation from 
the beginning of t to the end of  ), knowing that this facility is not the first to be 
located at i.3

t

jd

 

= demand of client j at period t; 

Qs = maximum capacity of a facility of dimension s; 
Nmax = maximum number of facilities that can be operational at one location at the same 

time. 
Let us define the variables: 

1   if a facility of dimension  located at  is opened at the beginning of period  
    and stays  open until the end of period , knowing that this is the first
    facility to be located at 

0
ist

s i t

i
a 

 
!

   otherwise

"
#
#
$
#
#
%

 

istr  !  number of facilities of dimension s located at i at the beginning of period t and 

staying open until the end of period  , knowing that this is not the first facility to 
be located at i. 

 t

ijsx !  fraction of customer j’s demand that is served by a facility of dimension s located 

at i during period t. 
 
The first facility to be located at i will be called i-first facility. All the other facilities that 
are located at i will be called i-follow facilities. 
The dynamic location problem of expansion and reduction of available capacities, 
considering that it is possible to reconfigure one location more than once during the 
planning horizon can be formulated as: 
 

DLPER 

    

  ! !
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t t

ijs ijs ist ist ist ist
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1
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is is ijs
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0
t T
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s

Nmax a r ,   ( i,s,t,  - t   (4) 

                                              
3 The fixed cost  

ist
FA  should be equal to  

ist
FR  plus the additional cost of installing for the first time a facility at 

location i. This additional cost may represent costs of land acquisition, development of infra-structures, etc. Let 

us define this additional cost as t

i
f . Then , , , ,

   ! & ( -t

ist ist i
FA FR f i s t t . 
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These constraints guarantee that: 
(2): Each client’s demand will be fully satisfied in each time period; 
(3): A client will be assigned to open facilities only; 
(4): A facility of dimension s that is opened at i at the beginning of period t can be 

considered as an i-follow facility only if there is an i-first facility that has been open at 
the beginning of a time period t’/ t (an i-follow facility and the i-first facility can be 
located simultaneously); 

(5): For each location i, there can be at most one i-first facility during the whole planning 
horizon; 

(6): There is an upper limit on the number of operating facilities at location i, in each time 
period; 

(7): The facilities’ maximum capacity will not be exceeded in any time period. 
The proposed model allows that, in each time period and in each location, every mix of 
facilities of different or equal dimensions is feasible, up to a maximum of Nmax number of 
facilities in each location.  
 
 

3 The Dual Problem and Complementary Conditions 
 

3.1 Formulation of the Dual Problem 
 
Multiplying constraints (5) and (6) by -1 and associating dual variables t

j
v  with 

constraints (2), dual variables t

ijsw  with constraints (3), dual variables istu  with 

constraints (4), dual variables i3  with constraints (5), dual variables t

i4  with constraints 

(6), and dual variables t

is5  with constraints (7), the dual problem of DLPER can be 

formulated as D-DLPER:  
 

D-DLPER 
3 4, ,'' ' ''t t

j i i

t j i t i

Max v Nmax         (9) 

subject to: 

5, , /t t t t t

j ijs j is ijsv w d c ,    ( , , ,i j s t            (10) 
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An equivalent condensed formulation is obtained by considering 

0 15! , , (max 0, , , , ,t t t t t

ijs j ijs j is
w v c d i j s t . 

 
CD-DLPER 
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3.2 Complementary Conditions 
 
Let us define: 

0 1Nmax
   

  . + + + + + +
+

+ . + + + +

3 4 5 5
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The following complementary conditions hold if in presence of optimal primal and dual 
solutions to the respective problems (when there is no duality gap). 
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4 Primal-Dual Heuristic 
 
The primal-dual heuristic here proposed follows the work of Erlenkotter (1978), Guignard 
and Spielberg (1979) and Van Roy and Erlenkotter (1982). 
The heuristic builds primal admissible solutions based on dual admissible solutions, 
trying to force the satisfaction of the complementary conditions. If a pair of primal and 
dual admissible solutions is found that satisfies conditions (18) – (24), then the optimal 
solution has been calculated. When this is not achieved, the best dual solution gives a 
valid lower bound for the optimal solution and may be used to assess the quality of the 
best admissible primal solution found. 
The heuristic operating scheme is the following: 
1. Initialization of dual variables; 

2. Dual Ascent Procedure for dual variables t

j
v ; 

3. Primal Procedure; 

4. Dual Adjustment Procedure for dual variables 3
i
. If the dual solution is changed 

go to 2; 

5. Repeat the Primal-dual Adjustment Procedure for variables t

j
v until there is no 

improvement in the dual objective function value; 

6. Dual Adjustment Procedure for dual variables 3
i
. If the dual solution is changed 

go to 2; 

7. Dual Ascent Procedure for dual variables  
istu . If the dual solution is changed go to 

2; 

8. Dual Descent Procedure for dual variables  
istu . If the dual solution is changed go 

to 2; 

9. If Nmax !1, then execute the Dual Adjustment Procedure for variables t

i4 . If the 

dual solution is changed go to 2. 

10. Dual Ascent Procedure for dual variables 5 t

is . If the dual solution is changed go to 

2; 

11. Dual Descent Procedure for dual variables 5 t

is . If the dual solution is changed go to 

2; 
 
The heuristic will stop when the optimal primal solution is found or when there are no 
improvements in either the primal or the dual objective function values. 
The Dual Ascent Procedure for dual variables t

j
v , the Primal-dual Adjustment Procedure 

for variables t

j
v , the Dual Adjustment Procedures for variables t

i4 and i3 are exactly the 

same as those developed by the authors for the resolution of the Dynamic Location 
Problem with Opening, Closure and Reopening of Facilities - DLPOCR (Dias et al., 2007a). 
Instead of considering the set I of possible locations, it should be considered the set I?S. 

In the Dual Ascent Procedure for dual variables t

j
v , and in the Primal-dual Adjustment 

Procedure the assignment costs should be considered equal to 5&t t t

ijs j isc d . For this reason, 

these procedures will not be described here. The Dual Adjustment Procedure for variables 
t

i
4  is executed only when Nmax equals 1. The computational experiments put in evidence 

that, in every other situation, the change of this dual variable does not increase the value 
of the dual objective function due to the variable’s dual objective function coefficient 
,Nmax. 

The Dual Ascent and Descent Procedures for variables 5 t

is  are also similar to the ones 

already developed by the authors for the DLPOCR with maximum capacity restrictions 
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(Dias et al., 2006). It is sufficient to consider facilities (i,s) with maximum capacities equal 
to Qs, instead of facilities i with maximum capacities equal to iQ . The two procedures 

referred will not be repeated here. 
 

4.1 Initialization of dual variables 
 
The dual variables are initialised as follows: 

1. 0 1 4@ ( @
,

min  , , ;   0,t t t

j ijs ii s
v c j t     i,t(  

2. 0 1  @ ,max 0, ,
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 .
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+ . + 
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" A8 9# #
@ , ,$ B: ;

< =# #% C
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,
max 0, min max ,
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4.2 Primal Procedure 
 
Consider the following definitions: 

I* = { ( i,s,+,  ):  
+isS  = 0}, 

It* = {(i,s) : ( i,s,+,  ) 2 I* and " / t /  }, 
It+ = {(i,s) : at least one facility of dimension s is open at i during period t}, 
I+ = { (i,s,+,  ) :  

+isa = 1 or  
+isr D0}, 

t

isF = smallest cost incurred by opening a facility of dimension s at i during period t, 

Num[i,s,t] = total number of open facilities at location i of dimension s during period t4

N[i,t] = total number of open facilities at location i during period t
, 

5

1. I+ @ E. It+ @ E,(t. Build sets I* and It*. Num[i,s,t] @ 0, (i,s,t. Num[i,t] @ 0, (i,t. 

. 
 
Primal Procedure 

2. For t=1 until T, include in set It+ all pairs (i,s)2It* such that 

) * ) *F - G ( H' ':  and , ', ' ,t t t t

j ijs j i s jj v c v c i s i s  (essential facilities as in Van Roy and 

Erlenkotter (1982) and Dias et al. (2007a)). 

3. For each client j such that ) * &G ( 2, ,t t

j ijs tv c i s I , include in set It+ the pair (i,s) such that 

-
!

' '
' 'min

t t
j i js

t t

ijs i js
v c

c c .  

4. Build set I+. Update It+,(t. 
5. t @ 1; 

6. N[i,t] @ I J' , ,
s

Num i s t ,(i2I. 

7. @' t

j

j

D d ; I J) *
) * &2

@ >'
,

, ,  
t

s

i s I

C Q Num i s t . If D / C then go to 17. 

8. Calculate t

isF ,( i2I, s2S.  

9. If t

isF  = +K, ( i2I, s2S, then go to 13. 

10. Calculate
LM N

! O P
O P

'
t

t is s
is

s s

F
F

Q Q
,( i2I, s2S, where L

, & G"
! $
%

,   if 

,   otherwise
s

s

s

D C C Q D

Q
 . 

11. Consider the pair (i’,s’) such that 0 1
2 2

!' '
,

' min 't t

i s is
i I s S

F F ; 

                                              
4 Represents the total number of elements (i,s,+,  ) 2 I+ such that + / t /  . 
5 Represents the total number of elements (i,s,+,  ) 2 I+ such that + / t /   , ( s 2 S. 
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12. It+ @ It+ Q0(i’,s’)1; Rebuild sets I+ and It+,(t; C @ C + Qs; NumIi,s,tJ @ NumIi,s,tJ+1; N[i,t] 

@ N[i,t]+1. If D / C then go to 17. Else go to 8. 
13. If s = q for every (i,s,+, ) 2 I+ with +/t/ , then Stop. The procedure cannot find a 

feasible solution.  
14. If DDC then, for every (i,s,+, )2I+ with sGq and +/t/ , calculate 

) *) *   
+ ++&

&

M N,
! , > O P,O P

1
1

is isi s

s s

D C
H FR FR

Q Q
. 

15. Choose (i,s,+, ) 2 I+ with sGq and + / t /   that corresponds to the smallest 
 
+isH . 

I+ @ I+ \ (i,s,+, ); I+ @ I+ Q {(i,s +1,+, )}; NumIi,s,tJ @ NumIi,s,tJ , 1; 
NumIi,s+1,tJ @ NumIi,s+1,tJ + 1; C @ C + Qs+1,Qs.  

16. If D > go to 13. 
17. t @ t + 1; If t / T go to 6.  
18. t @ 1; 
19. Solve one transportation problem considering as sources the set J of clients (with 

supplies dj
t), as destinations all pairs (i,s) 2 It+ (with demands Qs>Num[i,s,t]), and 

transportation costs (per unit) given by 
t

ijs

t

j

c

d
. 

20. t @ t + 1; If t / T go to 19.  

21. Calculate the values of primal variables  
+isa  and  

+isr . 

22. Execute a local exchange search procedure. 
 
There are several steps in this primal procedure that deserve further explanations. 
Step 4 of the primal procedure (building set I+) can be described as follows: 
 
Step 4 of the Primal Procedure

1. i @1. 
2. s @1. 

3. If F t: (i,s) 2 It+, go to 4; else go to 9. 
4. t1 @ min{+ : (i,s) 2I++ }; t2 @ max {+ : (i,s) 2I++ }. 

5. Calculate Num[i,s,t] and N[i,t], (t. I1+@ I+. Execute Procedure 1. 
6. Calculate Num[i,s,t] and N[i,t], (t. I2+@ I+. Execute Procedure 2. 

7.
) *

 
+

+  &2

@ '
, , , 1

1 is

i s I

sum FR ; 
) *

 
+

+  &2

@ '
, , , 2

2 is

i s I

sum FR . 

8. If (sum1G sum2) I+ @ I1+ ; else I+ @ I2+ . Calculate Num[i,s,t], (t. 

9. s @ s + 1; If s / q then go to 3. 

10. i @ i +1; if i D m stop. Else go to 2. 
 

After the execution of step 4, set I+ has as many (i,s,+, ) elements as the number of 
facilities of dimension s that are operating at i from the beginning of time period +  to the 
end of time period  . 
Procedures 1 and 2 are based on similar procedures described in Dias et al., 2007a. The 
main differences are due to the fact that in DLPOCR an admissible solution has, at most, 
one facility open in each location during each time period. In DLPER, it is admissible to 
have more than one facility simultaneously open. As described in Dias et al., 2007a, 
procedure 1 builds a solution from period t1 forward, while procedure 2 builds a solution 
from period t2 backwards. 
Step 7 of the primal procedure tests the admissibility of the primal solution constructed 
in terms of total available capacity. 
In step 8 of the primal procedure, the calculation of t

isF  accounts for all the hypotheses of 

having a facility of dimension s open at i during time period t. There are two possibilities: 
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a new facility is placed or the operating upper and/or lower time limits of an already 
existing facility are changed. The calculation of t

isF  tries to find the best choice in terms of 

fixed costs incurred. 
Let us define: 

) *, , ,        if , : ,

0,                                       otherwise
is is t

i

FA FR s i s I t s S
F

  
+ + +  +&6 6" , ( F 2 G ( 2R
! $
%

. 

 
This value represents the fixed cost incurred if the first equipment is placed at i at the 
beginning of time period ". 
Consider that facility i is not open during period t but is open in time periods before and 
after t, as depicted in figure 1. 

 
 

 
 

Figure 1:      represents facility i operating time periods 

Time periods a, b, c, d can be defined formally as: 0 10 1&

G
! 2 '

'
max 0,max ' : t

t t
b t i I ; 

) * & &! 2 Q' : , ',
A R

a t i t b I I ; 0 10 1&

D
! & 2 '

'
min 1,min ' : t

t t
c T t i I ; ) * & &! 2 Q' : , , '

A R
d t i c t I I . Time period b 

represents the time period before and nearest to t such that facility i is operating. Time 
period c represents the time period after and nearest to t such that facility i is operating. 
Let us also define '

iF  as the fixed cost of installing for the first time a facility at i, 

considering the set I+: 
) * ) *+

+ +& &6 6 6" F 2 2 S F 2 G ( 2R
! $
%

'        if , , ' , : ,

0,                                       otherwise
i t

i

F i s I s S i s I t s S
F  

Calculation of t

is
F

 

1. @ &Kt

isF . If N[i,t] = Nmax then stop. 

2.

I J I J0 1
) *

I J I J0 1

 
+

 
+

+  +  

+  +  

&

, / / G 2

@ F 2 / 2R

/ / G 2

'

'

min  :   and  , Nmax, ,   , 

min ,                                                                      if , ' , ' , '

min  :   and  , Nmax, ,   ,       

is i

t t

is is t

is

FA F t N i k k

F F i s I t t s S

FR t N i k k

" A"
# ### # #
$ $ B
# # #
# # #%% Cotherwise

6

3. Calculate 

 

) *0 10 1&

G
! 2 '

'
max 0,max ' : , t

t t
b t i s I ; ) *0 1&! 2' : , , ',a t i s t b I ; 

) *0 10 1&

D
! & 2 '

'
min 1,min ' : , t

t t
c T t i s I ; ) *0 1&! 2' : , , , 'd t i s c t I . 

4. If b ! 0 and c / T then  

I J I I0 10 1+
++

+ +@ & , , / G 2min ,min : , , Nmax, ,t t d d c

is is is i isc iF F FR F FR F t N i k k c 7

5. If c ! T + 1 and b D 0 then 

, stop. 

I J J J0 10 1 

 
  @ , - G 2min ,min : , , , ,t t b

is is isa isaF F FR FR t N i k Nmax k b , stop.  

                                              
6 If there is any facility operating in i during a time period before t, then the procedure considers only reopening 
fixed costs. Otherwise, it considers the cost of opening a facility for the first time, but discounts the fixed cost of 
installing for the first time a facility at time period  t’ D + (if that is the case).  
7 At this step the procedure tries to calculate the changes in fixed costs by merging two time intervals: )+, * and 

)c,d*. If period c corresponds to the period of the first installation of a facility in i then ) *, ' , , '+&F 2 G (R i s I t s
t

, so 

+
i
F  corresponds to the fixed cost of installing the first facility in i. If the facility was open for the first time before 

c then 0c

i
F ! . The same holds for 0

i
F + ! . 

a b t c d 1 



J. Dias et al. / Investigação Operacional, 27 (2007) 107-130 117 
 

6. If c / T and b D 0 and N[i,k] G Nmax, k 2Jb,cI then 0 1@ , ,min ,t t d b d

is is isa isa iscF F FR FR FR . 

 
 
Step 10 penalizes facilities with a dimension that is not sufficient to cover the difference 
between the clients’ total demand and the total available capacity (in this case it would be 
necessary to open more than one facility). The set I+ is updated, at step 12, considering 

the upper and lower limits that correspond to the smallest 6t
is

F  value. It is important to 

note that, in set I+, it is possible to have several identical elements (i,s,+, ). This 
corresponds to the situation where several identical facilities are installed at the same 
location and are open and closed in the same time periods. 
 
If it is not possible to find a feasible solution by opening more facilities during period t, 
steps (13)-(16) try to build a feasible solution by changing the dimension of the already 
located facilities. If all the facilities installed are of dimension q, then the procedure will 
not be able to build a feasible solution. Otherwise, for every (i,s,+, )2I+ with sGq and +/t/ , 
the procedure calculates the cost of changing dimension s to s+1 (penalizing those 
changes that are not sufficient to guarantee primal admissibility). 
 
 
Procedure 1: 

begin @ 1;time @ t1;  
WHILE time / t2  
 IF N[i,time]=Nmax THEN time @ time +1; CONTINUE; ENDIF 

 IF (i,s) 2 I+time THEN 
  + @ begin;   @ T; t @ time; stop @ false; 
  WHILE + / t and not stop 

   WHILE   - t and not stop 

    IF F (i, s,+,   ) 2 I*  THEN 
     (i, s, +,   )T I1+ 
     FOR k = +  TO k =    DO  

                    Num[i,s,k] @ Num[i,s,k] + 1 
                             N[i,k] @ N[i,k] + 1 

      IF N[i,k]=Nmax and begin / k THEN 
      begin @ k +1 
     ENDIF 
    ENDFOR 
    time @   +1 

     stop @ true 
    ENDIF 
    ELSE   @   -1 ENDELSE 
   ENDWHILE 
   + @ + +1;   @ T 
                       ENDWHILE 
             IF not stop THEN 
     @ t2 
   FOR k = time TO k = t2 DO 
    IF N[i,k] = Nmax THEN 
                                      @ k-1 
     BREAK 
    ENDIF 
   ENDFOR   
   IF (time   ! ) THEN 
    (i, s, time, ! )" I1+ 
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    FOR k = time TO k = !  DO 
     N[i,k] # N[i,k]+1; Num[i,s,k] # Num[i,s,k] +1 
     IF N[i,k]=Nmax and begin   k THEN 

     begin # k +1 
    ENDIF 

    ENDFOR 
                                               time # ! +1 
   ENDIF 
   ELSE time # time +1; begin # ! +1; ENDELSE 

          ENDIF 
 ENDIF 
 ELSE time # time +1 ENDELSE 

ENDWHILE 
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Procedure 2 

end # T; time # t2 ;  
WHILE time $ t1 

 IF N[i,time]=Nmax THEN time # time % 1; CONTINUE; ENDIF 
 IF (i,s) & I+time THEN 
  ' # 1; ! # end; t # time; stop # false; 
  WHILE ! $ t and not stop 

   WHILE '   t and not stop 

   IF ( (i, s, ' ,! ) & I*  THEN 
     (i, s, ',! )" I2+  
     FOR k = '  TO k = !  DO 
      N[i,k] # N[i,k]+1; Num[i,s,k] # Num[i,s,k] +1 

     IF N[i,k]=Nmax and end $ k THEN 
      end # k %1 
     ENDIF 

     ENDFOR 
     time # ' -1  
     stop # true 
    ENDIF 

   ELSE '  # ' +1 ENDELSE 
   ENDWHILE 
   ! # ! -1; ' #1 

           ENDWHILE 
            IF not stop THEN 
   ' # t1 
   FOR k = time DOWNTO k = '  DO 
    IF N[i,k] = Nmax THEN 
                                    '  # k +1 
     BREAK 
    ENDIF 
   ENDFOR   
   IF (time $ '  ) THEN 
    (i, s, ', time)" I2+ 

    FOR k = '  TO k = time  DO 
     N[i,k] # N[i,k]+1; Num[i,s,k] # Num[i,s,k] +1 
     IF N[i,k]=Nmax and end $ k THEN 

     end # k %1 
    ENDIF 

    ENDFOR 
                                               time # ' %1 
   ENDIF 
   ELSE time # time %1; end # ' %1; ENDELSE 

          ENDIF 
ENDIF 

 ELSE time # time –1; ENDELSE 
ENDWHILE 

 
Steps (18)-(20) solve the allocation problem, through the resolution of T transportation 
problems. 

Step 21 calculates the values of the primal variables !
'isa  and !

'isr . This is done in a 

straightforward manner. As costs !
'isFA  are equal to !

'isFR  plus the additional cost of 
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opening a facility in i for the first time (see footnote 1), the following procedure is used for 
each location i: 
 

1. If N[i,t] = 0, )t, then stop. 
2. Choose arbitrarily one element (i,s,',!) & I+, such that ' = min*t: ( (i,s) & It++. 

3. Set !
'isa = 1. Eliminate (i,s,',!) from set I+. 

4. All variables !
'isr  are set to the number of elements (i,s,',!) & I+. 

 
In step 22, the procedure tries to improve the feasible primal solution found by executing 
a very simple local exchange heuristic. The local exchange heuristic tries to change 

variable !
'isa  (and !

'isr ), to !
''isa (and !

''isr ), ) s’,s and s’&S.  It chooses the admissible change 

that corresponds to the greatest improvement in the primal objective function. The 
process is repeated until there are no improvements in the primal objective function 
value. 
 
 

4.3 Dual Ascent Procedure for dual variables 
 

u
ist

 

As can be seen by expressions (15) and (16), the increase in the dual variable !
istu can 

increase slacks !
istSR , but decreases slacks !

''isSA , '   t, )s’&S. It is only worth trying to 

increase slacks !
istSR  such that !

istSR = 0 and !
istSA - 0, otherwise the value !

istS  would not 

be changed and would not be possible to increase the value of dual variables t

jv . 

Dual Ascent Procedure for variables  

ist
u  

1. i # 1. 
2. s # 1. 
3. t # 1. 
4. ! # t. 

5. . !
istu # 0. 

6. If !
istSR = 0 and istSA! - 0, then . !

istu # 
!

2
istSA

. Else go to 10. 

7. ! ! /
'

'
/ '

&
 
$

0 1
2 2

. # .3 4
2 2
5 6

'
'

min ,minist ist is
s S

t

u u SA . 
Nmax

ist

ist

u
u

!
! .

. # . If . !
istu = 0 then go to 10.  

8. !
istSR # !

istSR +. istu! ; !
''isSA # !

''isSA % . istu! 8Nmax , '   t, )s’&S; !
istu # !

istu + . istu! . 

9. Execute the Dual Ascent Procedure for Variables t

j
v . 

10. !  # ! + 1. If ! - T then t # t +1 and go to 11. Else go to 5. 
11. If t - T then s # s +1 and go to 12. Else go to 4. 
12. If s - q then i # i +1 and go to 13. Else go to 3. 
13. If  i - m then stop. Else go to 2. 

In step 6 of this procedure, . istu!  takes the value 
!

2
istSA

 because if it would take the value 

!
istSA  this slack could become equal to zero in step 8 of this procedure, decreasing the 

possibilities of improving the dual objective function value. If * +! /
'

'
/ '

&
 
$

9 '
'
´

minist is
s S

t

SA SA , then !
istSA  

and !
istSR  will end up with the same value in step 8 of the procedure. 
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4.4 Dual Descent Procedure for dual variables 
 

u
ist

 

Decreasing the value of the dual variable istu!  will decrease the value of slack !
istSR , but 

will increase the value of all slacks !
''isSA , '   t, )s’&S. If the procedure increases the value 

of a slack that was blocking dual variables t

jv , it is possible to increase the dual objective 

function value. 
 

Dual Descent Procedure for variables  

ist
u  

1. i # 1. 
2. s # 1. 
3. t # 1. 
4. ! # t.  

5. . !
istu # min* !

istu ,
!

2
istSR
+. If . !

istu = 0, go to 8. 

6. !
istSR # !

istSR %. !
istu ; /

''isSA # /
''isSA + . !

istu 8Nmax, ' t and /$', )s’&S; !
istu # !

istu %. !
istu . 

7. Execute the Dual Ascent Procedure for Variables t

j
v . 

8. !  # ! + 1. If ! - T then t # t +1 and go to 11. Else go to 5. 
9. If t - T then s # s +1 and go to 12. Else go to 4. 
10. If s - q then i # i +1 and go to 13. Else go to 3. 
11. If  i - m then stop. Else go to 2. 

In step 5 of the procedure . !
istu  takes the minimum value between !

istu  and 
!

2
istSR

 for the 

same reasons already pointed out for the dual ascent procedure. 
 
 

5 Computational Results 
 
The primal-dual heuristic was tested with a set of randomly generated problems. Clients 
and possible locations for facilities are randomly generated, as well as capacities and 
demands. The data for the test problems were generated according to the following 
procedure: 
 
1. Random generation of (x,y) coordinates in the plane of the m+n nodes of the network 

according to a uniform distribution and considering a 500:500 square. 
2. Random creation of arcs between the network nodes, with a probability of 75%. 
3. Creation of arcs (not created in step 2) between nodes such that the Euclidean 

distance from one another is less than 50, with a probability of 80%. 
4. For the first period, the arcs’ cost are randomly generated according to a uniform 

distribution, in the interval [100,1100]. For t-1, the arc’s cost in period t is equal to its 
value in period t–1 plus a changing factor randomly generated corresponding to a 
variation between –10% and +10%. 

5. For each time period, calculation of the shortest path between each client and each 
facility, using the Floyd-Warshall algorithm. 

6. For each facility location i and period t, consider tend=t,…,T. For tend=t, the fixed 
costs for variables 

1

tend

i t
a and 

1

tend

i t
r  are randomly generated according to a uniform 

distribution in the interval [500,3500]. For dimensions 1s - , the fixed costs are 
randomly generated considering that they are between 20% and 80% greater than the 
fixed costs associated with dimension 1s % . For dimension 1s 9 , the unitary operating 
costs were randomly generated within the interval [1,11], using a uniform distribution. 
The unitary operation cost for a facility of dimension 1s -  is 20% to 80% less than the 
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unitary cost corresponding to dimension 1s % . For tend-t, a factor between 0% and 
10%, that represents an increase in the fixed cost for tend–1, is randomly generated. 

7. The maximum capacities and the clients’ demands in each time period are randomly 
generated, guaranteeing that the sum of the maximum capacities of all possible 
facilities is greater than the total demand. From one time period to the next the clients’ 
demands can be changed by a percentage of ±10%. 

 
All test problems, as well as the source code and executable file for the generation 
algorithm are available, upon request, from the authors. All experiments were carried out 
on a Pentium 4, 1.80 Ghz, running under Windows 2000 operating system, with a 
maximum of 2000 MB of virtual memory and 260Mb of Ram. The heuristic was 
programmed using the C-language and Microsoft Visual C++ compiler. The performance 
of the algorithm was compared with the performance of CPLEX, version 9.0.  
The test problems generated had the following dimensions: T =5 or 10; m = 10 or 20; n = 
50 or 100; q = 2 or 3; Nmax = 1 or 2. For each set of parameters, five test problems were 
generated, in a total of 160 problems. 
In each of the tables presented, the best, average and worst columns show the best, 
average and worst values obtained for each of the computational procedures tested. The 
summary line shows the best of the best values, the average of all the average values, and 
the worst of all the worst values. 
Table 1 shows the quality of the primal solution found by the primal-dual heuristic, with 
and without the execution of a local search procedure. This local search procedure visits 
the neighbours of the current solution that are in its k-neighbourhood, where the 
k-neighbourhood is defined as follows: a feasible solution FS’ is said to be in the 
k-neighbourhood of the feasible solution FS if and only if FS’ differs from FS by the 
insertion or removal of at most k continuous functioning time periods to a facility i. Notice 
that this definition of neighbourhood does not consider as neighbours solutions that differ 
only in the dimensions of the facilities located. The quality of a solution is calculated as 
(Z–ZLB);ZLB, where Z is the objective function value of the best primal solution found and 
ZLB is the value of the best lower bound known. Table 1 also shows the results obtained 
with the execution of a lagrangean heuristic. In this case, the capacity restrictions were 
relaxed in a lagrangean way, and the problem was solved using a dual heuristic procedure 
described in Dias et al., 2007a, for uncapacitated problems, embedded into a subgradient 
iterative method. 
Table 2 shows the quality of the dual solution obtained by the primal-dual heuristic and 
by the lagrangean heuristic. These values are calculated as (Z*-ZLB);Z*, where Z* represents 
the best primal objective function value known. Table 3 shows the computational times 
spent by all the procedures tested. Table 4 shows the results when Cplex is used, limiting 
its execution time to at most 600 seconds (about three times greater than the greatest 
computational time spent by the heuristic), and stopping the execution whenever Cplex 
finds a solution with a deviation from the best lower bound known equal to the average 
deviation obtained with the primal-dual heuristic, for that group of problems. In this table 
there is a column that shows, for each combination of parameters, the number of test 
problems for which Cplex was not able to find any primal solution within the time limit 
imposed. The last column represents the relation between the average computational 
times: 
 

 average computational time

Primal-dual heuristic + local search average computational time

Cplex
 

 
From the computational results shown, we can conclude that the primal-dual heuristic is 
capable of handling efficiently the tested problems. It is able to find good primal solutions, 
with a better performance when compared to the lagrangean heuristic. The primal-dual 
heuristic is much faster than the general solver, even when Cplex is stopped after finding 
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a primal solution of identical quality when compared to the solution build by the 
heuristic. The dual solutions are, in general, of bad quality. 
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Table 1 – Quality of the primal solution (in percentage) 
 

     
Primal-Dual 
Heuristic 

Primal-Dual 
Heuristic +  Local 

search 

Lagrangean 
Heuristic 

Lagrangean 
Heuristic + Local 

search 

T m n q Nmax Best Average Worst Best Average Worst Best Average Worst Best Average Worst 

5 10 50 2 1 0.00 1.29 4.25 0.00 1.29 4.25 0.00 2.10 5.24 0.00 1.09 5.24 

5 10 50 2 2 0.31 3.83 8.17 0.31 2.67 4.94 0.31 1.83 4.51 0.31 1.83 4.51 

5 10 50 3 1 2.33 3.14 3.68 0.00 2.57 3.68 0.00 3.00 5.92 0.00 2.28 3.91 

5 10 50 3 2 2.02 3.62 7.06 1.84 3.55 7.06 0.46 3.79 7.69 0.46 3.79 7.69 

5 10 100 2 1 0.00 3.03 7.72 0.00 0.93 2.02 0.00 4.08 10.27 0.00 1.89 5.03 

5 10 100 2 2 0.75 2.58 4.20 0.71 2.57 4.20 0.40 3.02 5.15 0.40 3.02 5.15 

5 10 100 3 1 0.00 5.85 9.72 0.00 3.93 7.11 0.04 5.85 12.79 0.04 3.78 6.76 

5 10 100 3 2 0.68 2.89 5.57 0.48 2.76 5.23 0.96 3.58 5.58 0.96 3.58 5.58 

5 20 50 2 1 0.89 2.59 6.15 0.89 2.59 6.15 0.02 2.50 9.08 0.02 2.50 9.08 

5 20 50 2 2 0.55 2.85 5.21 0.55 2.61 4.01 2.14 3.96 5.59 2.14 3.96 5.59 

5 20 50 3 1 2.43 5.02 7.61 2.07 4.12 5.98 0.44 3.95 8.98 0.44 3.00 4.42 

5 20 50 3 2 1.71 3.65 5.84 1.71 3.55 5.84 4.19 6.22 9.36 4.19 6.22 9.36 

5 20 100 2 1 2.27 4.23 6.33 0.35 2.79 6.33 3.58 4.47 6.64 1.75 3.17 4.46 

5 20 100 2 2 0.66 1.92 2.72 0.66 1.78 2.72 1.76 2.20 3.01 1.76 2.20 3.01 

5 20 100 3 1 1.31 4.27 7.89 0.00 3.49 5.60 1.03 3.76 9.56 0.00 2.55 4.83 

5 20 100 3 2 2.40 4.59 6.73 1.41 4.24 6.73 3.32 5.85 10.10 3.32 5.85 10.10 

10 10 50 2 1 0.01 2.35 4.34 0.01 2.34 4.34 0.01 1.84 3.59 0.01 1.83 3.59 

10 10 50 2 2 0.49 1.90 3.70 0.49 1.41 3.42 0.70 4.36 9.20 0.70 4.36 9.20 

10 10 50 3 1 2.01 4.37 5.69 1.03 2.10 3.27 0.57 2.84 5.26 0.57 1.91 2.63 

10 10 50 3 2 1.15 3.13 5.72 0.99 2.71 4.64 1.79 3.27 7.12 1.79 3.13 6.44 

10 10 100 2 1 0.01 1.57 2.69 0.01 1.00 2.20 1.45 2.32 2.76 0.44 1.39 2.76 

10 10 100 2 2 0.81 2.09 2.72 0.81 1.79 2.59 2.45 3.87 7.67 2.03 3.66 7.67 

10 10 100 3 1 2.69 4.07 5.91 0.49 1.79 3.60 1.74 4.09 5.91 0.49 1.85 2.91 

10 10 100 3 2 0.95 3.91 6.97 0.95 3.24 6.97 1.32 6.10 12.75 1.32 6.10 12.75 

10 20 50 2 1 1.45 2.60 3.27 0.60 2.19 3.27 1.45 3.35 5.30 0.60 2.70 5.30 

10 20 50 2 2 1.42 5.42 15.91 0.53 5.10 15.91 1.14 6.33 18.69 1.14 6.33 18.69 

10 20 50 3 1 0.76 4.12 7.57 0.18 3.35 7.21 0.76 5.45 8.36 0.76 5.22 8.36 

10 20 50 3 2 0.86 4.37 7.48 0.71 3.39 7.48 1.37 5.39 12.82 1.37 4.76 12.82 

10 20 100 2 1 3.04 4.14 5.15 2.11 3.03 4.64 2.75 3.99 6.41 1.25 3.13 6.41 

10 20 100 2 2 1.73 3.70 5.48 1.40 2.98 5.48 2.97 5.27 11.11 2.97 5.27 11.11 

10 20 100 3 1 2.22 4.84 6.68 0.06 1.54 2.70 1.96 6.87 11.44 0.47 2.89 5.30 

10 20 100 3 2 2.18 4.68 7.00 1.04 3.75 7.00 3.57 6.63 12.19 1.14 6.15 12.19 

Summary 0.00 3.52 15.91 0.00 2.72 15.91 0.00 4.13 18.69 0.00 3.48 18.69 
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Table 2 – Quality of the dual solution (in percentage) 
 

     
Primal-Dual 

Heuristic 

Lagrangean 

Heuristic 

T m n q Nmax Best Average Worst Best Average Worst 

5 10 50 2 1 3.61 10.68 19.37 4.03 9.87 20.88 
5 10 50 2 2 11.98 15.91 21.91 2.44 14.29 31.30 
5 10 50 3 1 11.48 15.05 26.47 10.10 13.81 16.10 
5 10 50 3 2 7.36 16.07 23.48 1.94 14.28 24.24 
5 10 100 2 1 5.27 11.70 23.05 7.09 15.46 30.29 
5 10 100 2 2 9.28 17.63 27.62 11.24 24.44 38.13 
5 10 100 3 1 6.29 13.10 19.41 8.57 14.05 23.29 
5 10 100 3 2 8.89 11.85 16.63 7.63 13.48 19.63 
5 20 50 2 1 9.57 14.97 20.49 1.48 13.13 26.60 
5 20 50 2 2 8.55 14.59 19.47 1.54 18.11 30.05 
5 20 50 3 1 8.11 15.35 20.44 11.06 16.80 26.21 
5 20 50 3 2 9.76 11.78 14.95 12.50 16.06 23.22 
5 20 100 2 1 6.26 11.06 17.86 4.88 10.66 15.84 
5 20 100 2 2 8.62 12.17 15.97 11.12 15.80 20.50 
5 20 100 3 1 7.62 16.06 21.12 11.53 16.19 24.43 
5 20 100 3 2 11.85 15.86 20.25 14.19 21.83 31.02 

10 10 50 2 1 5.77 10.94 14.75 6.15 8.17 11.51 
10 10 50 2 2 5.43 9.68 19.14 1.95 10.77 24.18 
10 10 50 3 1 5.43 9.86 15.57 7.74 10.31 14.38 
10 10 50 3 2 4.54 6.84 8.83 1.30 4.77 8.00 
10 10 100 2 1 5.84 8.75 15.43 6.63 10.92 18.11 
10 10 100 2 2 2.64 13.35 34.46 0.07 6.77 12.54 
10 10 100 3 1 6.28 8.28 12.20 7.61 9.53 10.72 
10 10 100 3 2 5.82 10.49 19.55 0.60 5.21 7.69 
10 20 50 2 1 5.32 10.64 19.08 1.03 7.09 9.76 
10 20 50 2 2 6.49 10.92 13.73 3.72 10.13 17.66 
10 20 50 3 1 10.52 14.18 18.19 0.28 7.17 10.74 
10 20 50 3 2 5.17 7.59 14.47 0.10 7.06 17.64 
10 20 100 2 1 5.01 9.82 12.64 7.39 10.40 12.85 
10 20 100 2 2 4.44 11.14 25.54 0.12 9.31 31.54 
10 20 100 3 1 5.63 8.72 11.32 7.45 10.64 13.81 
10 20 100 3 2 7.14 11.11 16.92 4.65 12.22 21.10 

Summary 2.64 12.07 34.46 0.07 12.15 38.13 
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Table 4 – Computational times when Cplex is used considering as termination criteria a maximum time 
of 600 seconds or finding a primal solution of quality equal to the average deviation obtained by the 

primal-dual heuristic 
 

T m n q Nmax 
Average Computational 

Times 
Number of Unsolved 

Problems 
Relation 

5 10 50 2 1 40.50 0 71.57 

5 10 50 2 2 118.87 0 113.17 

5 10 50 3 1 34.08 0 39.23 

5 10 50 3 2 83.92 0 46.22 

5 10 100 2 1 36.44 0 24.45 

5 10 100 2 2 31.76 1 9.74 

5 10 100 3 1 149.49 1 50.25 

5 10 100 3 2 --- 5 --- 

5 20 50 2 1 12.89 0 6.81 

5 20 50 2 2 127.76 0 29.18 

5 20 50 3 1 70.94 0 13.21 

5 20 50 3 2 --- 5 --- 

5 20 100 2 1 38.37 0 7.21 

5 20 100 2 2 121.12 3 15.34 

5 20 100 3 1 124.14 0 10.79 

5 20 100 3 2 318.12 2 14.38 

10 10 50 2 1 56.13 0 28.56 

10 10 50 2 2 126.73 0 40.92 

10 10 50 3 1 34.61 0 4.89 

10 10 50 3 2 367.44 4 56.02 

10 10 100 2 1 234.29 0 34.09 

10 10 100 2 2 112.66 2 12.47 

10 10 100 3 1 172.40 0 10.24 

10 10 100 3 2 378.72 4 15.55 

10 20 50 2 1 47.33 0 4.01 

10 20 50 2 2 54.56 0 4.98 

10 20 50 3 1 200.13 1 7.51 

10 20 50 3 2 273.56 3 8.50 

10 20 100 2 1 113.11 0 2.85 

10 20 100 2 2 284.71 1 4.47 

10 20 100 3 1 249.03 4 1.90 

10 20 100 3 2 --- 5 --- 

Global Average Values 138.41 1.28 23.74 
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We have also tested the use of memetic algorithms to this problem, namely by directly 
adapting the algorithm developed in Dias et al., 2007b, by creating dummy facilities. This 
approach showed to be unfit, because the memetic algorithm is capable of finding solutions 
that are, on average, 6% far from the optimal, but needs huge computational times (most of 
the times greater than Cplex computational times). 
 
 

6 Conclusions 
 
The mathematical model presented in this paper describes a dynamic location problem 
where the total available capacity can increase or decrease from one time period to the next, 
by opening or closing facilities of equal or different dimensions. 
The computational tests performed showed that the primal-dual heuristic developed is 
capable of solving efficiently the problem formulated.  
It would be interesting to apply other optimization techniques, namely metaheuristics, to 
the problem formulated, because it is unlikely that the primal-dual heuristic developed is 
capable of handling problems where the number of possible dimensions for facilities’ 
capacities is big. As the algorithm developed in Dias et al., 2007b, successfully used in 
solving other dynamic location problems, produced unsatisfactory results, a different 
approach is being thought, being the configuration of the chromosomes composition the 
biggest challenge. 
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