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POCTI/35059/MAT/2000.
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Abstract

In this paper a truss-structure model is described for finding a kinematically stable

structure with optimal topology and cross-sectional size and minimum volume. The un-

derlying model finds applications in some civil engineering structural design problems and

takes into consideration all the conditions associated with the limit states usually pre-

sented in structural safety codes. Ultimate limit states are treated applying plasticity the-

ory, while serviceability limit states are dealt with via elasticity theory. The admissible

solution space is discretised using bar elements. A 0 − 1 variable is assigned to each one

of these elements, in order to indicate if it is or not included in the solution. The math-

ematical formulation of the model leads to a mixed 0 − 1 integer nonlinear program with

a nonlinear objective function and linear and bilinear constraints. It is shown that this

problem can be reduced into a mixed 0 − 1 integer linear program by exploiting the so–

called reformulation–linearization technique. Some computational experience is included

to highlight the importance of these formulations in practice.
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1 Introduction

A decision support system to get the optimal skeleton form of the structure that supports
the applied loads can become a quite useful tool for an engineer in the design of a structure.
This has motivated an area of intense research [5, 6, 15, 16, 17, 18, 20, 25, 26, 28]. Most of
these papers describe trusses that, due to its simplicity, are ideal for the study of properties
and characteristics associated to optimal structures. The results of this research have found
interest in coverings, bridges and towers high-voltage.

Some optimization approaches have been developed for finding optimal trusses. The
most challenged one is Topological Optimization, where some elements of an initial struc-
ture may be removed in order to get an optimal subset of elements. The structural model
changes during the process and this turns out to be one of the most interesting problems
in structural optimization. Another important characteristic of these models for civil engi-
neering structures is the fact that the matrix associated with the connection of the bars in
the resultant optimal substructure must have full row rank. This condition can not be an-
alytically represented as a constraint, turning the optimization problem even more difficult
to process.

Some research has been developed in the last four decades in this area, the majority
related with sizing and geometrical optimization of optimal structural design. Due to its
complexity, few contributions have been done in optimal topology. However, its importance
in structural optimization is recognized since it allows a substantial gain of material and a
significant improvement in the design of the structure.

The topological optimization of discrete structures was introduced by Dorn et al. (1964)
[9], who applied a linear programming method to optimize truss topology. Since then much
research has been developed in this area [19, 28]. In most of these studies, the cross-
sectional area of each bar may take a zero value, in which case the bar is eliminated from
the structure. Moreover, these variables assume real values in order to make easier the
solution process. As is shown in [8, 24] some of these bars cannot be eliminated from the
structure, whence the structural problem should have a combinatorial nature.

Another drawback of these studies is the possibility of the optimal topology to corres-
pond to a singular point of the design admissible domain. This fact is a consequence of
the discontinuity of some constraints when the cross-sectional area is zero. The singularity
of the optimal topology in trusses was firstly shown in [24] and since then it has been a
subject of intense research [14, 15, 16, 17, 18]. The substitution of a discrete variable
xi ∈ {0, 1} by a continuous ones 0 ≤ xi ≤ 1 is much too strong. Thus for these models to be
useful in practice, the variables associated to the cross-sectional area of each bar must be
considered as discrete. In this case the difficulty associated with the discontinuity of some
constraints completely disappear. Some algorithms have been developed for processing this
type of problems [3, 4, 25, 26]. More recently, Bollapragada et al. [6] presented a topological
and sizing optimization model that has been formulated as a mixed integer linear program
[11].

Another aspect that distinguishes the different contributions in this area is the manner
how the limit states for the structural safety codes are defined. In civil engineering structural
problems, both ultimate and serviceability limit states have to be considered. The former
corresponds to collapse or other forms of structural ruin, while the latter are related to
scenarios that should be only reached in extreme circumstances. Such scenarios involve
excessive displacements and deformations, vibrations that may cause discomfort or alarm,
and damage affecting the form, durability or the use of the structure.

In the ultimate limit states the effect of the design loads, forces or stresses should not
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exceed the design values of the structural resistance, admissible forces or stresses. On the
other hand in the serviceability limit states the effects should comply with criteria of good
performance, that give limits to the displacements to their maximum admissible values.

Structural optimization usually reports to plastic models or to elastic models. In the for-
mer case, the ultimate limit states are treated using the Plasticity Theory and serviceability
limit states are not considered [22, 27]. The elastic models deal with both ultimate and
serviceability limit states by means of the Elasticity Theory [29, 6].

In this paper a mixed model has been adopted using Elasticity Theory for serviceability
limit states and Plasticity Theory for ultimate limit states. This model, here designed by
elastoplastic, is in our opinion the best suited to the current trend of the safety codes [1].
As in [14, 15, 16, 17, 19, 24], the analysis presented in this paper is based on the trusses.
Since the application of kinematically unstable trusses is confined to particular structures
and special forces, one of our most important objectives is to eliminate from the feasible set
the solutions associated with kinematically unstable trusses. So, each admissible solution
is characterized by a vector x, whose components are assigned to the value 1 or 0, depending
on the corresponding bar to be or not to be included in the feasible solution under consid-
eration. The mathematical formulation leads to a mixed integer 0− 1 nonlinear program. By
exploiting the so–called reformulation–linearization technique [21] it is possible to reduce
this program into a mixed integer 0− 1 linear programming problem. Computational experi-
ence with the solution of some instances of this integer program shows that the formulation
is a quite interesting tool for the design of a truss structure.

This paper is organized as follows. In section 2 the topological optimization model is
introduced. Conditions for a truss to be kinematically stable are discussed in Section 3. A
mixed–integer linear programming formulation of the model is fully presented in Section 4.
The solution of some illustrative examples and some conclusions concerning the validity of
the formulation are reported in the last section of the paper.

2 A topological optimization model

The admissible structural domain is referenced by a bidimensional cartesian system
Oxy, in which the various alternative solutions for the problem under consideration can be
developed. A discretisation [30] of this domain is then considered in which the mesh is
composed by bar elements joined at the nodal points.

The structural domain is submitted to the various actions defined in the safety code
[1] such as the structural self-weigth, wind, earthquake and so on. These actions lead to
different l loading conditions, each of them is represented by nodal point loads

f l =

[
f l

x

f l
y

]
.

Some of these loads are reactions rl, when the associated nodes are connected to the exte-
rior. The nodal displacements

ul =

[
ul

x

ul
y

]
are associated to these nodal forces. The stress field within each bar element i for loading
condition l can be determined from its axial load el

i, while the strain field is given by the
axial deformation dl

i.

The fundamental conditions to be satisfied in the serviceability limit states are equilib-
rium, compatibility, boundary conditions and elastic constitutive relations of the structural
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material. As in structural civil engineering problems the displacements are generally ac-
cepted to be small, the fundamental conditions can be performed on the initial structures.

Equilibrium has to be verified at a nodal level and relates the elastic axial bar forces el
e

with support reactions rl
e and applied nodal loads f l by

CT el
e −Brl

e − f l = 0, (1)

where C and B are matrices depending on the structural topology.

The compatibility conditions imply equal displacement for all the bar ends joining at the
same node and can be expressed as

dl
e = Cul, (2)

where dl
e is the bar deformation vector, ul is the nodal displacement vector and C is the

connectivity matrix already used in (1).

The forces el
e in the structural bars are related to the bar deformations dl

e by linear elastic
constitutive relations given by the so-called Hooke’s Law

el
e = KDAdl

e, (3)

where DA = diag{Ai}, with Ai a discrete variable associated to the cross-sectional area of
bar i and K = diag{Eih

−1
i }, with Ei > 0 the Young’s modulus of bar i and hi its length . It

follows from (1), (2) and (3) that

CT KDACul −Brl
e − f l = 0. (4)

The structural boundary conditions are given by

ul
m = 0 (5)

for the nodes m connected to supports with zero displacement.

The nodal displacements should comply with the upper and lower bounds defined in the
safety codes

umin ≤ ul ≤ umax. (6)

In structural civil engineering problems, ultimate limit states can be considered on the
basis of the Plasticity Analysis. According to the Static Theorem of the Plasticity Theory, the
fundamental conditions to be fulfilled by the structure are equilibrium, plasticity conditions
and boundary conditions.

The equilibrium conditions are given in a similar form to (1) by

CT el
p −Brl

p − λf l = 0, (7)

where el
p is the plastic force vector, rl

p the plastic reaction vector and λ is a partial safety
majoration factor for the nodal forces corresponding to the applied actions, prescribed in
structural safety codes [1, 2].

The plasticity conditions can be expressed as

emin ≤ el
p ≤ emax, (8)

where emin and emax are the minimum and maximum admissible values for the element
forces defined in the code [2].
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The conditions (4), (5), (6), (7) and (8) considered so far are satisfied by many solutions
in which some bars have zero force. A vector x is further introduced in the model such that
each variable xi is associated with bar i and takes value 1 or 0, depending on the bar i to be
or not to be included in the solution.

The force in a generic bar i can then be replaced by the product xie
l
pi

yielding a null force
in non-existing bars. So the axial bar force must verify the following conditions

Dxemin ≤ el
p ≤ Dxemax, (9)

where

Dx = diag(xi). (10)

Furthermore the diagonal matrix DA takes the form DADx. The model seeks an optimal
solution corresponding to the minimum use of structural material V . If Ai is the cross-
sectional area of bar i and hi is its length, then the objective function takes the form

V =
∑

i

xiAihi. (11)

3 Kinematic Stability

It follows from the description of the constrains and objective function presented in the
previous section that the model can generate trusses which are not kinematically stable.
In structural civil engineering problems the trusses must be kinematically stable that is, a
mechanism can not be generate independently of the loads applied set.

A simple criterion to check a mechanism is the use of the Grubler’s Criterion [12]. Let

DOF = 2nn∗ − nb∗ −m∗ (12)

be the degree of freedom of the truss with nn∗ nodes, nb∗ bars and m∗ simple supports. If
the corresponding truss is not a mechanism then DOF ≤ 0.

In order to incorporate this criterion in the model, another vector z ∈ R
nn has to be

introduced such that each variable zn is associated with node n ∈ {1, . . . , nn} belonging to
the initial mesh and takes a value 1 or 0 if it is or not included in the solution, that is, if
there are or not bars connected with this node.

So the existence of such a node n ∈ {1, . . . , nn} can be stated as

zn ≤
∑

i∈I(n)

xi ≤ |I(n)| zn, (13)

where I(n) ⊂ {1, . . . , nb} is the set of bar indices i occurring at node n and its cardinal |I(n)| is
always different from zero. Note that nn and nb are the number of nodes and the number of
bars of the initial mesh. So, if in the solution no bars occur in node n,

∑
i∈I(n) xi = 0 and by

the first inequality of (13) zn = 0 . Otherwise, if
∑

i∈I(n) xi ≥ 1 then by the second inequality

of (13) zn = 1.

Therefore, the Grubler’s Criterion can be stated as

2 ∗

nn∑
n=1

zn −

nb∑
i=1

xi −

nn∑
n=1

snzn ≤ 0, (14)
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where sn is the number of simple supports associated with node n.

This criterion eliminates many solutions associated to mechanisms. However, it does not
give a sufficient condition for a structure to be kinematically stable. A further condition is
required, that is associated with the rank of the matrix C∗ of order 2nn∗ × (nb∗ + na∗) matrix

(with nb∗ = (
∑nb

i=1 xi), nn∗ =
∑nn

n=1 zn and na∗ =
∑nn

n=1 snzn), obtained by elimination of the
rows and columns associated to zn = 0 and the zero columns from the matrix [−CT Dx B].
Then [10] the structure is kinematically stable if C∗ has full row rank. In order this condition
to be satisfied by the optimal structure, the two following constraints similar to (7) and (8)
are incorporated in the model

−CT (Dxea) + Bra + Zfa = 0 (15)

Dxemin ≤ Dxea ≤ Dxemax, (16)

where Z is a 2nn × 2nn diagonal matrix, with diagonal elements zjj equal to zn of the node
n associated to the direction j and fa is a vector of the perturbed nodal load applied in all
directions.

Let f∗a be the vector obtained by elimination of the rows associated to zn = 0 from vector
Zfa. If the rank of matrix C∗ is smaller than 2nn∗, the rank of the augmented matrix [C∗ f∗a ]
is rank(C∗)+1, since f∗a is randomly generated and the constraints (15) are unfeasible. Thus
the probability of the matrix C∗ to have linearly dependent rows is null and matrix C∗ should
have full row rank in the set of feasible solutions.

To show the need for incorporating constraints (15) and (16) in the model, let us consider
the following truss with only one nodal load applied on node II in direction Ox.

Figure 1: Truss kinematically unstable

The truss, shown in Figure 1, is not a mechanism, since DOF = 0. If the constraints (15)
and (16) are not considered in the formulation of the model, this truss can be an optimal
solution for the problem. However, the matriz C∗ associated with this truss

C∗ =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 1 0 0 0
0 0 0 1 0 0

−1 1 0 0 0 0
0 0 0 0 0 0
0 −1 0 0 1 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

has not full row rank and this truss is kinematically unstable.

Since, in constraint (15), fa �= 0 is a vector of perturbed nodal lodal applied in all direc-
tion and C∗ has not full row rank, the constraints (15) are unfeasible. Thus kinematically
unstable trusses are not feasible solutions for our model.

The model underlying to this problem can be formulated as the following mixed–integer
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0− 1 nonlinear program:

(P1) Minimize V =

nb∑
i=1

xiAihi

subject to

M(DADx)dl −Brl
e − f l = 0 (17)

dl = Cul (18)

uminj
≤ ul

j ≤ umaxj
(19)

ul
jm

= 0 (20)

−CT el
p + Brl

p + λf l = 0 (21)

DxDAtmin ≤ el
p ≤ DxDAtmax (22)

zn ≤
∑

i∈I(n)

xi ≤ |I(n)| zn (23)

2 ∗

nn∑
n=1

zn −

nb∑
i=1

xi −

nn∑
n=1

snzn ≤ 0 (24)

−CT ea + Bra + Zfa = 0 (25)

DxDAtmin ≤ ea ≤ DxDAtmax (26)

Ai ∈ Si = {Ai1, . . . , AiNi
}, (27)

xi ∈ {0, 1}, i = 1, . . . , nb, (28)

with l = {1, . . . , nc}, j = {1, . . . , 2nn}, jm = {1, . . . , na}, n = {1, . . . , nn} and i = {1, . . . , nb}.

The meanings of the parameters in this program are presented below:

nb number of bars;
na number of simple supports;
nn number of nodes;
nc number of loading conditions;
Ni number of discrete sizes available for cross-sectional area of bar i;
Aik k-th discrete size for bar i;
Si set of possible discrete cross-sectional area available for bar i;
C nb × 2nn matrix of direction cosines relating bar forces with nodal

directions;
B 2nn × na matrix of direction cosines relating nodal directions with

nodal suports directions;
Dx diagonal matrix, [diag(xi)];
DA diagonal matrix, [diag(Ai)];

M matrix

[
CT diag

(
Ei

hi

)]
;

Ei Young’s modulus of bar i;
hi length of bar i;
f l

j applied nodal loads in direction j for loading condition l;

I(n) set of bars indices which occur in node n;
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λ safety factor;
|I(n)| cardinal of set I(n);
sn number of simple supports associated with node n;
Z 2nn×2nn diagonal matrix, with zjj equal to zn of the node n associa-

ted to the direction j;
fa perturbed nodal load applied in all directions;

tmini
minimum stress in compression of bar i, where tmini

=
emini

Ai

;

tmaxi
maximum stress in tension of bar i, where tmaxi

=
emaxi

Ai

;

uminj
, umaxj

minimum and maximum nodal displacement in direction j.

The variables have the following meanings:

Ai cross-sectional area of bar i;
xi 0− 1 variable stating whether the bar i exists or not;
el
pi

bar force of bar i for loading condition l;

rl
pm

plastic reaction in supports m for loading condition l;

rl
em

elastic reaction in supports m for loading condition l;
dl

i deformation of bar i for loading condition l;
ul

j nodal displacement in the direction j for loading condition l;

zn 0− 1 variable stating whether the node n exists or not;
eai

bar force of bar i for the perturbed nodal load;
ram

plastic reaction in supports m for the perturbed nodal load.

This mixed–integer 0−1 nonlinear problem has nc× (4nn + 3nb)+4nn+2nb+1 constraints
and nc × (2nb + 2nn + 2na) + 3nb + nn + na variables. A similar formulation has been used
in [6, 13]. However, as discussed in [23], it represents a sizing problem rather than a
topological optimization problem.

4 A mixed–integer linear programming formulation

The formulation (P1) described in Section 3 contains a bilinear objective function on
the variables xi and Ai and some linear and bilinear constraints. The existence of these
bilinear functions imposes some limitations to the use of commercial software for processing
mixed-integer programs. In this section formulation (P1) is reduced to a mixed-integer 0− 1
linear program by using the so–called reformulation–linearization technique (RLT) [21].

The RLT consists of two steps, namely the reformulation and the linearization. The
reformulation phase defines a set of nonnegative variable factors, based on the various
bound restrictions, and then forms products of these factors with the original constraints to
generate another implied nonlinear constraints. In the linearization phase, an appropriate
technique of substitution of variables is used to linearize these nonlinear constraints. In
general, the original nonlinear program and the resulting linear program do not have the
same optimal solutions. However, there are certain special cases in which those problems
possess exactly the same optimal solution. In this section the mixed nonlinear 0− 1 integer
program (P1) is shown to be equivalent to a mixed-integer 0 − 1 linear program. To do this,
the vectors dl are assumed to be bounded, that is, there exist fixed constant vectors dmin

and dmax such that

dmin ≤ dl ≤ dmax l = 1, . . . , nc. (29)
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The existence of theses bounds is a consequence of the conditions (18), (19) and (20). In
the Reformulation Phase the constraints (29) are multiplied by xi and 1− xi, i=1,. . .,nb and
the further constraints

xidmini
≤ xid

l
i ≤ xidmaxi

dmini
(1− xi) ≤ dl

i − xid
l
i ≤ dmaxi

(1− xi)

are incorporated in (P1). In the Linearization Phase new variables vl
i defined by

vl
i = xid

l
i (30)

are introduced. Using these two phases of RLT technique, the problem (P1) can be stated
as follows:

(P2) Minimize V =
nb∑
i=1

xiAihi

subject to

M(DA)vl −Brl
e − f l = 0 (31)

dl = Cul (32)

ul
jm

= 0 (33)

uminj
≤ ul

j ≤ umaxj
(34)

dmini
xi ≤ vl

i ≤ dmaxi
xi (35)

dmini
(1− xi) ≤ dl

i − vl
i ≤ dmaxi

(1− xi) (36)

−CT el
p + Brl

p + λf l = 0 (37)

DxDAtmin ≤ el
p ≤ DxDAtmax (38)

zn ≤
∑

i∈I(n)

xi ≤ |I(n)| zn (39)

2 ∗
nn∑

n=1

zn −
nb∑
i=1

xi −
nn∑

n=1

snzn ≤ 0 (40)

−CT ea + Bra + Zfa = 0 (41)

DxDAtmin ≤ ea ≤ DxDAtmax (42)

Ai ∈ Si = {Ai1, . . . , AiNi
} (43)

xi ∈ {0, 1}, (44)

where l = 1, . . . , nc, j = 1, . . . , 2nn, jm = 1, . . . , na, n = 1, . . . , nn and i = 1, . . . , nb.

Next, the equivalence between the programs (P1) and (P2) is established. Since the ob-
jective functions of the two problems are the same, then it is enough to prove that there is a
bijective correspondence between the feasible solutions of the two problems. If the vector v̄l,
of components v̄l

i = x̄id̄
l
i, is introduced then by definition of the variables xi it is easy to con-

clude that (x̄, ā, ēl
p, r̄

l
p, d̄

l, ūl, r̄l
e) is a feasible solution of (P1) if and only if (x̄, ā, ēl

p, r̄
l
p, v̄

l, d̄l, ūl, r̄l
e)

is feasible for (P2). So the two formulations are equivalent.

In problem (P2), for each bar i, the cross-sectional area Ai takes a discrete value in the
set Si. According to the cardinal of these sets, two cases may occur and are discussed below.

• If #Si = 1 for all i, then (P2) is a mixed–integer linear program (MILP).

• If there exists an i such that #Si > 1, then (P2) is a mixed–integer nonlinear program
(MINLP).
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In the latter case, problem (P2) can be also reformulated as a MILP. For that purpose, let

Aixi =

Ni∑
k=1

Aikyik, (45)

where Ai ∈ {Ai1, . . . , AiNi
} and yik are binary variables such that

Ni∑
k=1

yik = xi. (46)

Since xi is a binary variable for each i, then the last expression is equivalent to

Ni∑
k=1

yik ≤ 1. (47)

So, for each bar i, Aixi is zero or assumes the value of only one discrete size in the set Si.
Moreover,

Aiv
l
i =

Ni∑
k=1

Aikql
ik, (48)

where ql
ik is the deformation corresponding to the k-th possible discrete size for the

cross-sectional area of the i-th bar under l-th loading condition. The variables ql
ik satisfy

the following expressions

Ni∑
k=1

ql
ik = vl

i (49)

dmini
yik ≤ ql

ik ≤ dmaxi
yik. (50)

By using the expressions (45), (46), (48) and (49) and adding the constraints (47) and (50)
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the following mixed–integer 0− 1 linear program is obtained:

(P3) Minimize V =

nb∑
i=1

(
Ni∑

k=1

Aikyik

)
hi

subject to

nb∑
i=1

Mji

(
Ni∑

k=1

Aikql
ik

)
−

na∑
m=1

Bjmrl
em
− f l

j = 0 (51)

dl = Cul (52)

umin ≤ ul ≤ umax (53)

dmini
yik ≤ ql

ik ≤ dmaxi
yik (54)

dmini

(
1−

Ni∑
k=1

yik

)
≤ dl

i −

Ni∑
k=1

ql
ik ≤ dmaxi

(
1−

Ni∑
k=1

yik

)
(55)

ul
jm

= 0 (56)

−CT el
p + Brl

p + λf l = 0 (57)

tmini

Ni∑
k=1

Aikyik ≤ el
pi
≤ tmaxi

Ni∑
k=1

Aikyik (58)

zn ≤
∑

i∈I(n)

Ni∑
k=1

yik ≤ |I(n)| zn (59)

2 ∗

nn∑
n=1

zn −

nb∑
i=1

Ni∑
k=1

yik −

nn∑
n=1

snzn ≤ 0 (60)

−CT ea + Bra + Zfa = 0 (61)

tmini

Ni∑
k=1

Aikyik ≤ eai
≤ tmaxi

Ni∑
k=1

Aikyik (62)

yik ∈ {0, 1} (63)

Ni∑
k=1

yik ≤ 1, (64)

where l = 1, . . . , nc, j = 1, . . . , 2nn, jm = 1, . . . , na, k = 1, . . . , Ni, n = 1, . . . , nn and
i = 1, . . . , nb.

This problem is a mixed–integer linear program with some 0− 1 variables with

nc×

(
4nn+5nb+ 2

nb∑
i=1

Ni

)
+3nb+4nn+ 1

constraints and

nc×

(
2nb+2nn+2na+

nb∑
i=1

Ni

)
+

nb∑
i=1

Ni+nn+nb+na

variables. This dimension is considerably larger than the dimension of the problem (P1).
However, all the functions involved in this formulation are linear and this enables the use
of an integer linear programming code for its solution.
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5 Computational Experience and Conclusions

In this section computational experience is reported on the solution of some structural
models by using the mixed-integer formulation (P3). These experiences have been performed
on a Pentium IV 2.4GHz with 256 MB of RAM. Moreover, the commercial program OSL of
the GAMS collection [7] has been used to process the mixed-integer linear programs (P3).

(I) Test Problems

In each test problem the corresponding initial structure consists of nodal points and
bars and takes a similar form to the type mesh displayed in Figure 2.

Figure 2: Initial mesh

The main goal of this model is to find the set of included bars in the so–called optimal shape
of the structure, which is given by the values of the 0− 1 variables xi in the optimal solution
of the problem.

Different types of sizes of initial meshes, and different applied nodal forces have been
taken in consideration in the construction of the test problems. Four sizes of initial meshes,
Mi, i = 0, . . . , 3, have been considered, whose topologies are presented in Table 1 leading to
five test problems Pt0 to Pt4, according to the following definitions:

• Pt0 - mesh M0 and only one nodal load is applied (f1
x4

= 65, f1
y4

= 0).

• Pt1, Pt2 - mesh M1 and two types of applied nodal loads are applied. In Pt1 only one
nodal load (f1

x8
= 0, f1

y8
= −65) is applied, while two nodal loads (f1

x8
= 0, f1

y8
= −65,

f2
x9

= −40, f2
y9

= −40) are applied in Pt2.

• Pt3 - mesh M2 and two nodal loads are simultaneously applied (f1
x3

= −45.9619,
f1

y3
= 45.9619, f1

x12
= −45.9619, f1

y12
= −45.9619).

• Pt4 - mesh M3 and only one nodal load is applied (f1
x23

= 0, f1
y23

= −65).

In these definitions the following parameters are used:

f l
xn

nodal load in (kN) applied in node n in direction Ox for loads combination l;
f l

yn
nodal load in (kN) applied in node n in direction Oy for loads combination l.
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Table 1: Test Problems Meshes.

MESH hx hy nal nb nn na Ni Si

M0 4 3 2× 2 6 4 3 1 3
GROUP M1 8 6 3× 3 20 9 3 1 3

I M2 6 9 3× 4 29 12 8 1 3
M3 16 12 5× 5 72 25 3 1 3

SM1 8 6 3× 3 20 9 3 2 0.5;3
GROUP SM2 8 6 3× 3 20 9 3 3 0.5;1;2

II SM3 6 9 3× 4 29 12 8 2 0.5;3
SM4 6 9 3× 4 29 12 8 3 0.5;2;3

In Table 1 the following notations are included.

nal dimension of the mesh in terms of number of nodal in Ox and Oy axes, respec-
tively (in Figure 2, nal = 5× 4)

hx total length (in m) to the Ox axis
hy total length (in m) to the Oy axis
nb number of bars
nn number of nodes
na number of simple supports
Si set of discrete sizes available for cross-sectional area of bar i (in cm2)
Ni number of discrete sizes available for cross-sectional area of bar i

In the first group of test problems, structures have been considered for which an unique
discrete value is given in each cross-sectional area of each bar. In the second set of problems
it is allowed that each bar of the structure assumes one of the values in a finite set of discrete
sizes available for its cross-sectional area. This last group leads to four additional test
problems, denoted by St1, St2, St3 and St4, and whose associated initial meshes are SM1,
SM2, SM3 and SM4, respectively. The meshes SM1 and SM2 have the same dimensions of
the M1 mesh, while SM3 and SM4 have the same dimensions of the ones in M2. The nodal
loads applied in St1 and St2 are the same as in Pt1, while in ST3 and ST4 are the same as
in Pt3. The number of constraints (nr) and the number of variables (nv) of formulations P3
associated to these test problems are presented in the Table 2.

Table 2: Dimensions of Test Problems.

P3

PROB nr nv

Pt0 93 51
GROUP Pt1 273 136

I Pt2 449 220
Pt3 387 205
Pt4 921 444

St1 313 176
GROUP St2 353 216

II St3 445 263
St4 503 321

In all test problems the displacements and bars stress limits considered are
umax = −umin = 50cm, tmax = −tmin = 355MPa, respectively and the partial safety factor
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λ is equal to 1.5.

(II) Numerical Results

Tables 3 and 4 display the numerical results corresponding to the performance of the
OSL code for finding an optimal solution of each one of the test problems associated to
formulation (P3). This performance is evaluated in terms of number of pivot step iterations
(NI), nodes (ND) and CPU time in seconds (T) . In this table, the notation ”> 25000000” is
used whenever the code has been unable to find an optimal solution for a particular test
problem after 25000000 iterations (pivot step iterations). The optimal objective function
value (OBJ), in dm3, found by the solver is also included. In the failure case (NI> 25000000),
(OBJ) corresponds to the best upper bound computed by the algorithm. Note that best
solution found may be not optimal for the problem (P3) in this last case.

Table 3: Numerical results with only one available value for the cross-sectional area.

OSL

PROB NI T ND OBJ (dm3)

PT0 53 0.04 7 3.60
PT1 3033 0.69 311 10.80
PT2 5579 1.77 497 12.90
PT3 891143 325.64 82075 11.92
PT4 >25000000 15018.78 347541 27.30

Table 4: Numerical results with more than one available value for the cross-sectional area.

OSL

PROB NI T ND OBJ (dm3)

ST1 64943 22.80 8132 7.05
ST2 57473 30.01 10052 4.90
ST3 4788682 3996.54 411084 6.29
ST4 20606789 61486.08 1496081 5.46

The results presented in Tables 3 and 4 show that for meshes of small and average
dimension the integer programming code OSL is able to find an optimal solution that leads to
structural shapes containing a smaller number of nodes and bars. This is in accordance to
the objective of finding an optimal structure with the smallest possible volume. However, for
meshes of larger dimensions we may not guarantee that the best solution found is optimal.
But, even in this case the corresponding solution leads into a structure of small volume. So
the results clearly indicate the validity of the new formulation, as in general the solution of
the integer program corresponds to optimal structural shapes that are kinematically stable
and involve a small amount of material. This conclusion is well illustrated in Figure 3, which
includes the initial mesh M2 and the optimal and deformed forms obtained for the problems
PT3, ST3 and ST4 associated to this mesh. The bar forces associated to the bars as well as
the elastic and the plastic reactions are indicated under parenthesis. It is not difficult to see
that the optimal structure requires a small amount of material and is kinematically stable.
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Initial Mesh

Legend —- available bars

Optimal shape of ST3

Legend Area: —– 0.5cm2 ----- 3cm2

Optimal shape of PT3

Legend Area: ----- 3cm2

Optimal shape of ST4

Legend Area: —– 0.5cm2 ----- 2cm2 ----- 3cm2

Figure 3: Initial and optimal shape structures of PT3, ST3 and ST4
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The numerical results also show that a branch-and-bound algorithm, such as OSL, may
face difficulties to find the optimal solution for the integer program corresponding to struc-
tures with large number of nodes and bars. An alternative technique for processing the
linear integer program in this instance is then required. This algorithm should be designed
to find the global minimum for the associated integer program or at least a good feasible
solution requiring a small amount of material. The design of such algorithm will certainly
be a topic for future research.

References

[1] Eurocode 1 EN 1991. Basis of Design and Actions on Structures. CEN, Brussels, 1998.

[2] Eurocode 2 EN 1992. Design of Concrete Structures - Part1: General Rules and Rules for

Buildings. CEN, Brussels, 1999.

[3] I. Arora and M. Haung. Methods for optimization of nonlinear problems with discrete
variables: a review. Structural Optimization, 8:69–85, 1994.

[4] J. Bauer. A survey of methods for discrete optimum structural design. Computer As-

sisted Mechanics and Engineering Sciences, 1:27–38, 1994.

[5] M. P. Bendsoe and O. Sigmund. Topology Optimization - Theory, Methods and Applica-

tions. Springer, 2003.

[6] S. Bollapragada, O. Ghattas, and J. Hoocker. Optimal design of truss structures by
logic-based branch and cut. Operations Research, 49:42–51, 2001.

[7] A. Brooke, D. Kendrick, A. Meeraus, and R. Raman. GAMS a User’s Guide. GAMS
Development Corporation, New York, 1998.

[8] W. Dobbs and L. Felton. Optimization of truss geometry. ASCE Journal of Structural

Division, 95:2105–2118, 1969.

[9] W. Dorn, R. Gomory, and H. Greenberg. Automatic design of optimal structures. Jour-

nal de Mécanique, 3:25–52, 1964.

[10] A. Ghali and A. M. Nevilleand T. G. Brown. Structural analysis: A unified classical and

matrix approach. Spon Press, London, 2003.

[11] O. Ghattas and I. Grossmann. MINLP and milp strategies for discrete sizing structural
optimization problems. In Proceedings of ASCE 10th Conference on Electronic Computa-

tion. Indianapolis, 1991.

[12] A. Ghosh and A. Mllik. Theory of Mechanisms and Machines. Affiliated East-West Press,
New Delhi, 1988.

[13] I. Grossmann, V. T. Voudouris, and O. Ghattas. Mixed-integer linear programming for-
mulations of some nonlinear discrete design optimization problems. In C. A. Floudas
and P. M. Pardalos, editors, Recent Advances in Global Optimization. Princeton Univer-
sity Press, 1992.

[14] X. Guo and G. Cheng. An extrapolation approach for the solution of singular optima.
Structural and Multidisciplinary Optimization, 19:255–262, 2000.

[15] X. Guo, G. Cheng, and K. Yamazaki. A new approach for the solution of singular optima
in truss topology optimization with tress and local buckling constraints. Structural and

Multidisciplinary Optimization, 22:364–372, 2001.



A.M. Faustino et al / Investigação Operacional, 26 (2006) 111-127 127

[16] A. Hoback. Optimization of singular problems. Structural Optimization, 12:93–97, 1996.

[17] U. Kirsch. On singular topologies in optimum structural design. Structural Optimization,
2:133–142, 1990.

[18] G. Rozvany. Difficulties in truss topology optimization with stress, local bucking and
system stability constraints. Structural Optimization, 11:213–217, 1996.

[19] G. Rozvany, M. Bendsoe, and Kirsch. Layout optimization of structures. Applied Me-

chanics Reviews, 48:41–118, 1995.

[20] E. Salajegheh and G. Vanderplaats. Optimum design of trusses with discrete sizing and
shape variables. Structural Optimization, 6:79–85, 1993.

[21] H. Sherali and W. Adams. A Reformulation-Linearization Technique for Solving Discrete

and Continuous Nonconvex Problems. Kluwer Academic Publishers, Boston, 1999.

[22] H. Simon. The Sciences of the Artificial. MIT Press, Massachusetts, 1969.

[23] M. Stolpe and k. Svanberg. Modeling topology optimization problems as mixed linear
programs. In Optimization and Systems Theory. Department of Mathematics, Royal
Institute of Technology (KTH), SE-100 44 Stockholm, Sweden, 2001.

[24] G. Sved and Z. Ginos. Structural optimization under multiple loading. International

Journal of Mechanical Sciences, 10:803–805, 1968.

[25] A. Templeman. Heuristic methods in discrete structural optimization. In W. Gutkowski,
editor, Discrete Structural Optimization, pages 135–165. CISM Courses and Lectures No.
373, Udine, Italy, 1997.

[26] P. Thander and G. Vanderplaats. Survey of discrete variable optimization for structural
design. Journal of the Structural Engineering, 121:301–306, 1995.

[27] A. Toakley. Optimum design using available sections. Journal of the Structural Division,

American Society of Civil Engineers, 34:1219–1241, 1968.

[28] B. Topping. Topology design of discrete structures. In M. Bendsoe and C. Soares,
editors, Topology design of structures, pages 517–534. Kluwer Academic Publishers,
Amsterdam, 1993.

[29] G. Vanderplaats and P. Thanedar. A survey of discrete variable optimization for struc-
tural design. In Proceedings of the ASCE Tenth Conference on Electronic Computations,
pages 173–180. Dayton, Ohio, 1991.

[30] O. Zienkiewicz. The Finite Element Method. MacGraw-Hill, Berkshire, 1997.


