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Abstract

We extend a variant of a predictor-corrector primal-dual method for Linear Program-
ming to Semidefinite Programming. Two versions are proposed. One of the versions uses
the HKM direction and the other the NT direction. We present the algorithms associated
with these versions and the computational experience using the SDPLIB 1.2 collection of
Semidefinite Programming test problems. We show that, in general, the algorithm using
the HKM direction is the best and is also better than the one relative to the classical
method.

Keywords: Semidefinite Programming, predictor-corrector interior point variant, HKM direction, NT
direction.

1 Introduction

Semidefinite Programming, SDP, is a recent, but important, field of Mathematical Program-
ming and, although its roots are older [3, 12], most of its remarkable advances were made in
the 90’s [1, 14]. With this work, we intend to obtain a predictor-corrector primal-dual interior
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point algorithm with better performance and more precise than the other algorithms of the
same type already known.

Many interior-point methods for SDP are extensions of the methods that already exist for
Linear Programming, LP [1, 14]. In [2] a variant of Mehrotra’s predictor-corrector method
for LP was presented and it was shown to be more efficient than the original for the class of
problems studied in that work. We propose a new variant for SDP that is an extension of that
one for LP.

We present two versions of the new variant. One of them uses a direction, that was
independently proposed by Helmberg, Rendl, Vanderbei and Wolkowicz in [8] and Kojima,
Shindoh and Hara [11] and later rediscovered by Monteiro [13], which is usually refered as
HKM direction. The other version uses the NT direction introduced by Nesterov and Todd in
[15]. We also compare the results of these versions and the ones obtained with the classical
method.

This paper is organized as follows. In Section 2, we present some useful notions and results
about Semidefinite Programming and the solution of the the Lyapunov equation

AX + XAT = H, (1)

with A ∈ S++
n and H ∈ Mn. In Section 3, the primal-dual and the predictor-corrector

algorithms, bases of the new variant, are described. In Section 4, the version of the variant
with the HKM direction is presented. In Section 5, the NT direction for the new variant
is computed and the corresponding version of the variant is presented. In Section 6, the
computational experience is described. A brief description of the used tools is given and the
obtained results with the new versions and the classical method are compared.

2 Preliminaries

The set of real m×n matrices, Mm,n, is a real vector space isomorphic to Rmn. In this vector
space we define the inner product between A, B ∈ Mm,n by

〈A, B〉 = Tr (BT A) =
m∑

i=1

n∑

j=1

aijbij ,

where Tr (·) represents the trace, which is the sum of the main diagonal entries of a matrix.

The associated norm, 〈A, A〉1/2, is called Frobenius norm and is represented by ‖A‖F . The
particular case of the square matrices of order n will be represented by Mn. The set of real
symmetric matrices of order n, Sn = {A ∈ Mn : AT = A}, is a subspace of Mn isomorphic to
Rn(n+1)/2. For A, B ∈ Sn 〈A, B〉 = Tr (AB). The set of positive semidefinite matrices, S+

n , is
a full dimensional, non polyhedral convex cone in Sn and induces a partial order on the set of
symmetric matrices. We write A º B if A−B ∈ S+

n . The interior of the cone S+
n is the set of

positive definite matrices and is denoted by S++
n . Similarly, A ≻ B means that A−B ∈ S++

n .

Consider the matrices Ai ∈ Sn, i = 1, ..., m and the linear operator A : Sn −→ Rm defined
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by

A(X) =




〈A1, X〉
...

〈Am, X〉


 .

The adjoint operator of A, the operator AT : Rm → Sn defined by 〈A(X), y〉 = 〈X,AT (y)〉,
for all X ∈ Sn and y ∈ Rm, is AT (y) =

∑m
i=1 yiAi.

The standard primal-dual pair of Semidefinite Programming problems is

(P) min
X

〈C, X〉 (D) max
y,Z

bT y

s.t A(X) = b s.t AT (y) + Z = C
X º 0 Z º 0,

where C ∈ Sn and b ∈ Rm.

The primal problem is (P) while (D) is the Lagrangian dual of (P). Any X ((y, Z)) that
satisfy the constraints of (P) ((D)) is called a feasible solution of (P) ((D)). If X ((y, Z)) is a
feasible solution of (P) ((D)) and X ≻ 0 (Z ≻ 0) then X ((y, Z)) is called a strictly feasible
solution of (P ) ((D)).

Any primal-dual pair of feasible solutions verifies the relation 〈C, X〉 − bT y = 〈X, Z〉 > 0,
called weak duality property. If 〈X, Z〉 = 0, then the primal-dual pair (X, Z) is optimal but
the reciprocal is not true, that is, the strong duality property is not always true. A sufficient
condition for the optimal values of (P) and (D) be the same is the existence of strictly feasible
solutions for both the primal and the dual problems.

We end this section with a result that gives the solution of the Lyapunov equation

AX + XAT = H, (2)

with A ∈ S++
n and H ∈ Mn known [10].

Let us first introduce the definition of Hadamard product [9], necessary to the next theorem.

Definition 2.1. The Hadamard product of A = [aij ], B = [bij ] ∈ Mm,n is A ◦ B = [aijbij ].

Theorem 2.1. Let A ∈ S++
n be a matrix satisfying A = SΛST , S, Λ ∈ Mn, S orthogonal and

Λ = Diag(λ1(A), . . . , λn(A)), where λi(A), i = 1, . . . , n are the eigenvalues of A. Consider
that H ∈ Mn, then the solution of (2) is

X = S[L ◦ (ST HS)]ST ,

with L = [lij ], where lij = (λi(A) + λj(A))−1.

3 A primal-dual method and a classical predictor-corrector

variant

The SDP algorithms presented in this paper correspond to different versions of a new predictor-
corrector variant of the primal-dual method developed by Christopher Helmberg, Franz Rendl,



256 F. Bastos, A. Teixeira / Investigação Operacional, 25 (2005) 253-276

Robert J. Vanderbei and Henry Wolkowicz [8]. In this section we will briefly describe the
infeasible versions of this primal-dual method and of the classical predictor- -corrector variant.

Although it is not needed a feasible solution, the method requires the existence of an initial
primal-dual pair (X0, Z0) satisfying X0, Z0 ∈ S++

n .

The primal barrier problem is

PB(µ) : min
X

〈C, X〉 − µ ln(det(X))

s.a A(X) = b,

where µ > 0 is the barrier parameter.

For each µ, the corresponding Lagrangean is

Lµ(X, y) = 〈C, X〉 − µ ln(det(X)) + 〈y, b −A(X)〉.

The first order optimality conditions for PB(µ), necessary and sufficient in this case, are

∇XLµ = C − µX−1 −AT (y) = 0
∇yLµ = b −A(X) = 0.

Taking Z = µX−1 we can rewrite these conditions in the following form

CPS(µ)





A(X) = b
AT (y) + Z = C

XZ = µI
X ≻ 0
Z ≻ 0.

(3)

The set of solutions of CPS(µ) for µ > 0,

C = {(Xµ, yµ, Zµ) : µ > 0} ,

is called central path. Note that, for a point (X, y, Z) in the central path we obtain µ =
〈X, Z〉/n.

Given (X, y, Z) ∈ C we want to find a search direction (∆X, ∆y, ∆Z) so that (X +∆X, y+
∆y, Z + ∆Z) is still in the central path. Let

Fµ(p) =




A(X) − b
AT (y) + Z − C

XZ − µI


 , (4)

with p = (X, y, Z). Using Newton’s method we can obtain a search direction ∆p = (∆X, ∆y, ∆Z)
by solving

Fµ(p) + ∇Fµ(p)∆pT = 0.

This system can be written as
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NFS(µ)





A(∆X) = Fp

AT (∆y) + ∆Z = Fd

∆XZ + X∆Z = µI − XZ,
(5)

where Fp = b −A(X) and Fd = C − Z −AT (y).

Rewriting NFS(µ) we obtain





A(XAT (△y)Z−1) = −µA(Z−1) + b + A(XFdZ
−1)

∆Z = Fd −AT (∆y)
∆X = µZ−1 − X − XFdZ

−1 + XAT (∆y)Z−1.
(6)

From the first equation we get ∆y and, replacing it in the remaining equations, we get ∆X
and ∆Z. The obtained ∆Z is symmetric, consequence of the second equation, but, as X and
Z do not commute, this is not the case for ∆X. As the first and the third components of
the next iterate must belong to S++

n we have to obtain a symmetric ∆X. There are several
ways of doing this, one of them is just using the symmetric part of ∆X, that is, supposing
that (∆̂X, ∆y, ∆Z) is the solution of (6) then, our search direction will be (∆X, ∆y, ∆Z) with

∆X = (∆̂X + (∆̂X)T )/2. This search direction is known as HRVW/KSH/M direction.

In each iteration, two step lengths are computed, one associated with the primal direction,
αp, and the other with the dual, αd. Both values are obtained using the backtracking method.
After computing αp and αd the algorithm moves from the current iterate (X, y, Z) to the next
iterate

(X + αp∆X, y + αd∆y, Z + αd∆Z).

Brian Borchers [4] developed an infeasible predictor-corrector variant of the primal-dual
method presented in [8]. We will call it classical predictor-corrector, PCC. In this variant,
to obtain the search direction we assume that is possible to take a step of length one in the
direction (∆X, ∆y, ∆Z) and replace in the first three equations of CPS(µ), in (3), the current
iterate (X, y, Z) by the new iterate (X + ∆X, y + ∆y, Z + ∆Z). The result is the system





A(∆X) = Fp

AT (∆y) + ∆Z = Fd

X∆Z + ∆XZ = µI − XZ − ∆X∆Z.
(7)

To obtain the predictor direction, in (7) we take µ = 0 and neglect the non-linear term

∆X∆Z. Solving this system we get the triple (∆̂X◦, ∆y◦, ∆Z◦) satisfying





A(XAT (∆y◦)Z−1) = b + A(XFdZ
−1)

∆Z◦ = Fd −AT (∆y◦)

∆̂X◦ = −X − XFdZ
−1 + XAT (∆y◦)Z−1,

with Fd = C−Z−AT (y). As in the primal-dual case, the predictor direction (∆X◦, ∆y◦, ∆Z◦)

is obtained symmetrizing ∆̂X◦.

The corrector direction is also obtained from (7). We use (∆X◦, ∆y◦, ∆Z◦) to compute
µ and to approximate the non-linear term ∆X∆Z by ∆X◦∆Z◦. The final direction is the
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sum of the predictor and the corrector directions, that is, we take (∆X, ∆y, ∆Z) = (∆̂X◦ +

∆̂Xc, ∆y◦ + ∆yc, ∆Z◦ + ∆Zc). Now, considering the conditions satisfied by the predictor
direction we obtain the following system





A(∆̂Xc) = 0
AT (∆yc) + ∆Zc = 0

X∆Zc + ∆̂XcZ = µI − ∆X◦∆Z◦.

(8)

From (8) we get the triple (∆̂Xc, ∆yc, ∆Zc) satisfying





A(XAT (∆yc)Z−1) = −A(µZ−1 − ∆X◦∆Z◦Z−1)
∆Zc = −AT (∆yc)

∆̂Xc = µZ−1 − ∆X◦∆Z◦Z−1 + XAT (∆yc)Z−1.

We obtain the corrector direction (∆Xc, ∆yc, ∆Zc) after symmetrizing ∆̂Xc. The final direc-
tion is

(∆X, ∆y, ∆Z) = (∆X◦ + ∆Xc, ∆y◦ + ∆yc, ∆Z◦ + ∆Zc).

In the classical predictor-corrector algorithm, like in the primal-dual, different choices for
the primal and dual step lengths are made, using the backtracking method. In each iteration,

αk
p = 0.99 sup

α
{α ∈ [0, 1] : Xk + α∆Xk ≻ 0}

αk
d = 0.99 sup

α
{α ∈ [0, 1] : Zk + α∆Zk ≻ 0}. (9)

To obtain the supreme, we begin with α = 1 and α is actualized to be 90% of the previous α,
this is, αnew = 0.9αold.

The computation of the duality measure, µ, is not only based on the quantities 〈X, Z〉/n
and 〈X, Z〉/2n but it also uses two line searches associated with the predictor direction.

The initial solution used is

X0 = 100αI, y = 0, Z0 = 100βI, (10)

with

α = n max
16i6m

1 + |bi|
1 + ‖Ai‖F

,

β =

1 + max

(
max

16i6m
‖Ai‖F , ‖C‖F

)

√
n

.

(11)

Finally, the termination criteria is

‖b −A(Xk)‖2

1 + ‖b‖2
6 1.0 × 10−06;

‖C −AT (yk) − Zk‖F

1 + ‖C‖F
6 1.0 × 10−06

|〈C, Xk〉 − bT yk|
1 + |bT yk| 6 1.0 × 10−07; Xk ≻ 0; Zk ≻ 0.

(12)
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4 A new predictor-corrector variant

From the previous section, we know that the classical predictor-corrector algorithm performs
four line searches by iteration, two of them after obtaining the predictor direction to estimate
the duality measure and the other two after computing the final direction. The algorithm we
extend from LP [2] just makes two line searches per iteration and so it has the advantage of
decreasing the running time of each iteration.

The major differences between this new variant and the classical predictor-corrector for
LP are:

- the predictor direction is computed as in the primal-dual method;

- it uses the same µ for both the predictor and the corrector directions;

- to obtain µ no line search is needed.

We first tried to extend this variant to SDP literally. In particular, we used µ = 〈X, Z〉/2n,
indicated in [8] as a good heuristic for the primal-dual algorithm, in the predictor and corrector
steps. We verified that this option did not work in this context. We also tried some other
heuristics mentioned in [2] such as

µ =
〈X, Z〉
θ(n)

with θ(n) =

{
n2 if n 6 5000

n
√

n if n > 5000,

always using the same µ in both steps.

After some computational experience, we verified that we could get substantial improve-
ments if we consider different values of µ in the predictor and corrector steps. From that
computational experience we concluded that the best heuristics for µ are:

µ = µp =
〈X, Z〉
2.2n2

, in the predictor step

µ = µc =
〈X, Z〉
2n5/4

, in the corrector step.
(13)

These expressions for the duality measure, although basically empirical, have some theo-
retical foundation. Let us assume this is a feasible method, that is, Fp = 0 and Fd = 0 in
NFS(µ), (5). Then, at k-th iteration

〈C, Xk〉 − 〈b, yk〉 = 〈AT (yk) + Zk, Xk〉 − 〈A(Xk), yk〉
= 〈AT (yk) + Zk, Xk〉 − 〈AT (yk), Xk〉
= 〈Zk, Xk〉.

Suppose now that, instead of considering αk
p and αk

d, we would consider αk = min{αk
p, α

k
d}.

Then, we would get

〈C, Xk+1〉 − 〈b, yk+1〉 = 〈Zk+1, Xk+1〉 = 〈Zk + αk∆Zk, Xk + αk∆Xk〉
= 〈C, Xk〉 − 〈b, yk〉 + αk

(
〈Zk, ∆Xk〉 + 〈∆Zk, Xk〉

)
+

+(αk)2〈∆Zk, ∆Xk〉.
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On the other side, from the third equation of NFS(µ), (5), we have Tr (∆XkZk + Xk∆Zk) =
Tr (µkI − XkZk) that is equivalent to

〈Zk, ∆Xk〉 + 〈∆Zk, Xk〉 = nµk − 〈Zk, Xk〉.
Furthermore, using the definition of adjoint operator and the assumption of the method being
feasible, we obtain

〈∆Zk, ∆Xk〉 = 〈−AT (∆yk), ∆Xk〉 = −〈A(∆Xk), ∆yk〉
= 〈0, ∆yk〉 = 0.

Then, 〈C, Xk+1〉−〈b, yk+1〉 = 〈C, Xk〉−〈b, yk〉+αk
(
nµk − 〈Zk, Xk〉

)
. This allow us to conclude

that
〈C, Xk+1〉 − 〈b, yk+1〉 < 〈C, Xk〉 − 〈b, yk〉

if

µk <
〈Zk, Xk〉

n
. (14)

Both options for µk in (13) satisfy (14). But, as the method is not feasible and we do
not use αk = min{αk

p, α
k
d}, we can not guarantee a decrease of 〈C, X〉 − 〈b, y〉. However, in

practice, we verified that these options are much better than any other already proposed.

To implement this new variant we first used the HKM direction and the backtracking
method to compute the step length, as in the classical predictor-corrector. For the backtracking
method the proceeding is similar to the one described in (9), but the new α is chosen as 85%
of the previous one and not 90% as it happened before. This version of the new variant can
be formalized in the following algorithm:

Algorithm 1 - BHKM

Require: (X0, y0, Z0) satisfying (10) and (11);
Take k = 0;
while the termination criteria (12) is not satisfied do

(a) Take µk
p = σk 〈X

k, Zk〉

2.2n2
, with σk ∈ [0, 1];

(b) Solve system (6) for (∆̂X◦k

,∆y◦k

,∆Z◦k

), considering µ = µk
p;

Symmetrize ∆̂X◦k to get (∆X◦k

,∆y◦k

,∆Z◦k

);

(c) Take µk
c = σk 〈X

k, Zk〉

2n5/4
, with σk ∈ [0, 1];

(d) Solve system (8) for (∆̂Xck

,∆yck

,∆Zck

), considering µ = µk
c ;

Symmetrize ∆̂Xck to get (∆Xck

,∆yck

,∆Zck

);

(e) Take (∆Xk,∆yk,∆Zk) = (∆X◦k

,∆y◦k

,∆Z◦k

) + (∆Xck

,∆yck

,∆Zck

);
(f) Compute αk

p and αk
d using (9) with αnew = 0.85αold;

(g) Take Xk+1 = Xk + αk
p∆Xk and (yk+1, Zk+1) = (yk, Zk) + αk

d(∆yk,∆Zk);
(h) Take k = k + 1;

end while

5 The new predictor-corrector variant with NT direction

Another direction that is often used in practice and also theoretically studied is due to Nesterov
and Todd and is called NT direction [15, 16, 17]. Thus, we decided to implement this direction
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in our predictor-corrector variant.

As this direction is not directly obtained, as it happens with HKM, we will present its
computation. Once more, we will assume that is possible to take a step of length one in the
direction (∆X, ∆y, ∆Z). This way we get the system





A(∆X) = Fp

A(∆y) + ∆Z = Fd

(X + ∆X)(Z + ∆Z) = µI,
(15)

with Fp = b −A(X) and Fd = C − Z −AT (y).

The NT direction is obtained using a scaling matrix to reformulate the third equation
of (15), so that the solution of the new system is symmetric. Let us consider the Cholesky
factorizations of X and Z, X = LLT and Z = RRT , the singular value decomposition of RT L,

UDV T = RT L, and the scaling matrix W = X1/2(X1/2ZX1/2)
−1/2

X1/2. It can be shown
that W satisfies the condition W−1X = ZW and that it can be written as W = GGT , with
G = LV D−1/2 [17]. Then, G−1XG−T = GT ZG.

Consider now D = G−1XG−T = GT ZG, DX = G−1∆XG−T and DZ = GT ∆ZG. Thus,
the third equation of (15) is equivalent to (D +DX)(D +DZ) = µI. Weakening this equation,
by replacing the left member by its symmetric part, we get

1

2
[(DX + DZ)D + D(DX + DZ)] = µI − D2 − 1

2

(
DXDZ + DZDX

)
. (16)

To obtain the predictor direction we take µ = µp and neglect the non-linear terms in
(16). This way we get a Lyapunov equation in D◦

X + D◦
Z which has the symmetric solution

µpD
−1 − D. Multiplying both members of

D◦
X + D◦

Z = µpD
−1 − D

by G on the left and GT on the right we get

∆X◦ = µpZ
−1 − X − W∆Z◦W.

This equation, jointly with (15), allow us to obtain





A(∆X◦) = Fp

AT (∆y◦) + ∆Z◦ = Fd

∆X◦ = µpZ
−1 − X − W∆Z◦W.

(17)

Solving (17) we get the triple (∆X◦, ∆y◦, ∆Z◦) satisfying





A(WAT (∆y◦)W ) = A(WFdW + X − µpZ
−1) + Fp

∆Z◦ = Fd −AT (∆y◦)
∆X◦ = µpZ

−1 − X − WFdW + WAT (∆y◦)W.
(18)

The corrector direction is obtained taking in (16) DX = D◦
X + Dc

X , DZ = D◦
Z + Dc

Z and
µ = µp + µc. The non-linear terms DXDZ and DZDX are also approximated by D◦

XD◦
Z and
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D◦
ZD◦

X , respectively. Then, considering the conditions satisfied by the predictor direction, we
can write

(Dc
X + Dc

Z)D + D(Dc
X + Dc

Z) = Hc,

with Hc = 2µcI − (D◦
XD◦

Z +D◦
ZD◦

X). By Theorem 2.1, the solution of this Lyapunov equation
is L ◦ Hc, with L = [lij ] where lij = (di + dj)

−1 and di and dj represent the i-th and the j-th
entries of the diagonal matrix D, respectively. Multiplying both members of

Dc
X + Dc

Z = L ◦ Hc

by G on the left and by GT on the right we get

∆Xc = G(L ◦ Hc)G
T − W∆ZcW. (19)

Now, consider D◦
X = G−1∆X◦G−T , Dc

X = G−1∆XcG−T , D◦
Z = GT ∆Z◦G and Dc

Z =
GT ∆ZcG. Then, it is possible to show that the equalities DX = D◦

X +Dc
X and DZ = D◦

Z +Dc
Z

are equivalent to ∆X = ∆X◦ + ∆Xc and ∆Z = ∆Z◦ + ∆Zc, respectively. Furthermore,
D◦

XD◦
Z + D◦

ZD◦
X = G−1∆X◦∆Z◦G + (G−1∆X◦∆Z◦G)T . Thus, taking (∆X, ∆y, ∆Z) =

(∆X◦ + ∆Xc, ∆y◦ + ∆yc, ∆Z◦ + ∆Zc) and considering (19) and the conditions satisfied by
the predictor direction we get the system





A(∆Xc) = 0
∆Zc + AT (∆yc) = 0

∆Xc = G(L ◦ Hc)G
T − W∆ZcW,

(20)

with Hc = 2µcI−[(G−1∆X◦∆Z◦G)+(G−1∆X◦∆Z◦G)T ]. The solution of (20) is the corrector
direction (∆Xc, ∆yc, ∆Zc) that satisfies





A(WAT (∆yc)W ) = −A(G(L ◦ Hc)G
T )

∆Zc = −AT (∆yc)
∆Xc = G(L ◦ Hc)G

T + WAT (∆yc)W.

The final direction, (∆X, ∆y, ∆Z), is obtained adding the predictor and the corrector
directions.

From the computational experience with this version we verified that we got better results
when we used a different heuristic for the duality measure in the predictor direction,

µp =
〈X, Z〉
2.3n2

.

The algorithm corresponding to the version of our predictor-corrector variant that uses NT
direction will be called BNT algorithm and differs from the BHKM algorithm in the following
points:
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(a) Take µk
p = σk 〈X

k, Zk〉

2.3n2
, with σk ∈ [0, 1];

(b) Solve system (17) for (∆X◦k

,∆y◦k

,∆Z◦k

), considering µp = µk
p;

(d) Solve system (20) for (∆Xck

,∆yck

,∆Zck

), considering µc = µk
c ;

6 Computational experience

Now, we will describe the computational experience that we have done to compare the two ver-
sions of our predictor-corrector variant and the classical predictor-corrector method, described
in the previous sections.

6.1 Brief description of the used tools

The computational tests were performed in a Pentium III, 1100 Mhz, 245232 KB of RAM,
with the 7.3 version of the Red Hat Linux operating system and the 2.96 version of the gcc
compiler. To implement the new predictor-corrector variant we used the 3.2 version of the
source code of the package CSDP by Brian Borchers [4, 6, 7]. The code was modified to
achieve two main purposes: it was adapted to be possible to implement the different versions
of the predictor-corrector variant and it was optimized to become faster and more robust.

To compare the performance of the algorithms we used the SDPLIB 1.2 collection of SDP
test problems [5]. It has 92 problems in a wide range of sizes and drawn from many different
applications, including truss topology design, control systems engineering and combinatorial
optimization. It also includes primal and dual infeasible instances.

6.2 Results

We will present the results corresponding to both versions of the predictor-corrector variant
described earlier and compare those results with the ones obtained with the classical predictor-
corrector algorithm (PCC algorithm). We will use tables with information about the number
of iterations, It, the total CPU time (in seconds), T, and the relative duality gap, RDgap. We
will also include information about the relative admissibility, that specifies if the algorithm
stops with a solution that is far from satisfying any of the admissibility criteria or not. All the
solutions obtained satisfy the relative dual admissibility termination criteria but the same does
not happen with the primal one. Thus, in RDgap column will appear * if the relative primal
admissibility belongs to ]1.0 × 10−06, 1.0 × 10−03[ and ** if it is non inferior to 1.0 × 10−03.
In all the experiences we used (12) as termination criteria and (10), satisfying (11), as initial
solution.

Due to memory problems it was not possible to obtain any results for the problems maxG55
and maxG60, so they were not included in the tables. For the same reason, it was also not
possible to obtain some results with the BNT algorithm. In this case, the fields of the table
will contain m.

In the next section we will analyse the results presented.
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Name It T RDgap

arch0 30 31 3.51e-08

arch2 30 34 6.28e-08

arch4 29 33 9.99e-09

arch8 30 34 8.66e-08

control1 26 < 1 4.07e-08

control2 30 1 1.33e-08

control3 37 9 3.49e-07

control4 31 29 7.52e-08

control5 38 134 6.85e-07

control6 39 349 6.68e-08 *

control7 39 792 5.45e-08

control8 44 1680 1.69e-06

control9 39 2629 5.84e-07

control10 39 4476 2.87e-06

control11 41 7466 3.35e-06 *

equalG11 21 3378 1.06e-08

equalG51 24 7727 1.35e-08

gpp100 20 7 3.11e-08

gpp124-1 29 18 7.38e-07 *

gpp124-2 26 14 3.70e-08

gpp124-3 21 12 9.55e-08

gpp124-4 24 13 8.34e-08

gpp250-1 32 157 2.53e-05

gpp250-2 28 125 4.77e-07

gpp250-3 21 83 5.86e-08

gpp250-4 27 113 4.04e-08

gpp500-1 26 1070 7.56e-08

gpp500-2 34 1715 4.83e-07 *

gpp500-3 39 2099 5.49e-07

gpp500-4 32 1618 3.56e-08

hinf1 40 < 1 7.46e-06

hinf2 40 < 1 9.89e-09

hinf3 40 < 1 6.25e-06

hinf4 19 < 1 3.04e-08

hinf5 40 1 3.23e-05

hinf6 40 < 1 1.55e-05

hinf7 33 < 1 1.25e-08

hinf8 40 < 1 2.13e-06

hinf9 23 < 1 1.89e-08

hinf10 40 < 1 1.36e-04

hinf11 40 < 1 7.13e-05

hinf12 49 < 1 5.62e-04

hinf13 40 < 1 1.92e-05 *

hinf14 40 1 1.96e+00 **

hinf15 45 1 3.89e-06 *

Name It T RDgap

infd1 14 < 1 2.69e+00

infd2 15 < 1 3.03e-01

infp1 40 2 2.09e+00

infp2 40 3 1.93e+00

maxG11 19 1691 5.22e-08

maxG32 20 51059 7.84e-08

maxG51 21 3962 1.00e-08

mcp100 16 4 1.33e-08

mcp124-1 16 5 9.59e-08

mcp124-2 17 5 1.00e-08

mcp124-3 18 6 1.00e-08

mcp124-4 17 7 1.48e-08

mcp250-1 18 35 1.00e-08

mcp250-2 17 34 8.03e-08

mcp250-3 18 40 1.00e-08

mcp250-4 17 42 6.99e-08

mcp500-1 20 430 9.50e-09

mcp500-2 20 459 2.62e-08

mcp500-3 20 483 1.00e-08

mcp500-4 20 526 1.00e-08

qap5 19 1 4.95e-06

qap6 18 2 6.07e-08

qap7 41 21 1.04e-07

qap8 26 49 3.92e-07

qap9 19 83 3.51e-08

qap10 22 234 4.42e-08

qpG11 20 15225 9.50e-09

qpG51 22 44005 1.00e-08

ss30 30 466 7.28e-08

theta1 18 < 1 9.50e-09

theta2 19 26 6.19e-08

theta3 19 247 4.14e-08

theta4 21 1387 3.14e-08

theta5 20 4727 6.84e-08

theta6 20 13951 6.73e-08

thetaG11 27 6221 2.19e-08

thetaG51 40 193855 2.19e-07

truss1 16 < 1 1.00e-09

truss2 18 < 1 2.42e-08

truss3 18 < 1 3.13e-08

truss4 16 < 1 1.00e-08

truss5 22 2 6.05e-08

truss6 24 1 5.11e-08

truss7 21 1 8.29e-08

truss8 27 41 4.71e-08

Table 1: PCC algorithm
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Name It T RDgap

arch0 31 28 2.18e-08

arch2 31 31 3.49e-08

arch4 30 31 1.42e-08

arch8 31 32 3.10e-08

control1 35 < 1 6.93e-08

control2 34 1 7.34e-08

control3 39 9 3.20e-07

control4 32 30 7.10e-08

control5 39 136 3.38e-07

control6 37 329 9.50e-07 *

control7 40 766 1.66e-06

control8 42 1515 1.61e-06

control9 38 2538 7.18e-07

control10 39 4457 1.12e-05 *

control11 41 7441 4.72e-06 *

equalG11 22 2888 6.60e-08

equalG51 24 6220 9.09e-08

gpp100 25 6 7.17e-08

gpp124-1 25 11 1.54e-08

gpp124-2 24 10 5.48e-08

gpp124-3 27 12 1.59e-08

gpp124-4 24 11 4.83e-08

gpp250-1 25 86 5.62e-08

gpp250-2 25 86 5.71e-08

gpp250-3 25 86 7.37e-08

gpp250-4 23 79 8.90e-09

gpp500-1 26 895 1.33e-08

gpp500-2 25 865 4.49e-08

gpp500-3 24 831 4.03e-08

gpp500-4 24 832 2.56e-08

hinf1 24 < 1 8.23e-08

hinf2 34 < 1 1.00e-07

hinf3 23 < 1 8.38e-08

hinf4 25 < 1 2.45e-08

hinf5 40 < 1 5.70e-06 *

hinf6 31 < 1 2.22e-06

hinf7 43 < 1 5.93e-08

hinf8 34 < 1 3.99e-07

hinf9 29 < 1 8.73e-09

hinf10 30 < 1 1.94e-05

hinf11 30 < 1 1.24e-05

hinf12 40 < 1 7.89e-02

hinf13 32 < 1 1.08e-05 *

hinf14 37 < 1 5.51e-06 *

hinf15 35 2 2.83e-05 *

Name It T RDgap

infd1 14 < 1 2.58e+00

infd2 13 < 1 8.76e-01

infp1 30 1 1.87e+00

infp2 30 1 1.93e+00

maxG11 20 1364 3.49e-08

maxG32 22 52270 6.08e-08

maxG51 21 3047 6.61e-08

mcp100 17 2 5.37e-08

mcp124-1 18 4 6.91e-08

mcp124-2 19 5 3.67e-08

mcp124-3 18 5 3.76e-08

mcp124-4 19 5 3.02e-08

mcp250-1 20 31 1.55e-08

mcp250-2 20 32 3.44e-08

mcp250-3 19 34 3.51e-08

mcp250-4 19 39 5.91e-08

mcp500-1 20 322 2.04e-08

mcp500-2 20 351 2.11e-08

mcp500-3 19 353 4.92e-08

mcp500-4 20 403 1.83e-08

qap5 28 < 1 2.06e-08

qap6 26 3 6.25e-08

qap7 37 18 1.09e-07

qap8 25 39 8.69e-08

qap9 24 101 5.81e-08

qap10 27 280 9.31e-08

qpG11 21 12223 7.80e-08

qpG51 25 43256 8.52e-08

ss30 27 369 8.14e-08

theta1 22 < 1 3.20e-08

theta2 22 28 6.82e-08

theta3 22 276 3.65e-08

theta4 22 1426 3.57e-08

theta5 22 5115 5.05e-08

theta6 22 15187 1.86e-08

thetaG11 28 5233 2.85e-08

thetaG51 38 142052 1.68e-07

truss1 24 < 1 5.04e-08

truss2 20 < 1 2.19e-08

truss3 22 < 1 3.79e-08

truss4 23 < 1 3.88e-08

truss5 27 3 2.25e-08

truss6 24 1 1.47e-08

truss7 26 < 1 1.76e-08

truss8 27 38 2.82e-08

Table 2: BHKM algorithm
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Name It T RDgap

arch0 32 65 3.13e-08

arch2 30 65 8.68e-08

arch4 31 67 2.53e-08

arch8 31 67 8.54e-08

control1 34 1 4.98e-08

control2 33 1 4.75e-08

control3 39 10 2.43e-07

control4 32 37 3.99e-08

control5 44 160 1.58e-06 *

control6 38 354 2.61e-07 *

control7 39 786 5.64e-07

control8 38 1463 1.41e-06

control9 38 2708 7.68e-07

control10 41 4932 9.54e-06 *

control11 39 7211 3.33e-06 *

equalG11 21 6474 4.39e-08

equalG51 23 15046 3.19e-08

gpp100 25 12 9.99e-08

gpp124-1 26 23 1.33e-08

gpp124-2 29 26 2.36e-08

gpp124-3 23 20 9.13e-08

gpp124-4 22 19 4.62e-08

gpp250-1 25 207 1.55e-08

gpp250-2 25 210 4.53e-08

gpp250-3 23 193 7.33e-09

gpp250-4 23 194 4.96e-08

gpp500-1 27 2097 2.28e-08

gpp500-2 26 1995 6.01e-08

gpp500-3 24 1847 2.04e-08

gpp500-4 22 1678 3.84e-08

hinf1 33 < 1 1.91e-07

hinf2 33 < 1 1.11e-07

hinf3 32 < 1 1.45e-06

hinf4 25 < 1 8.64e-08

hinf5 30 < 1 2.02e-05 *

hinf6 20 < 1 7.88e-08

hinf7 39 < 1 1.83e-07 **

hinf8 32 < 1 1.18e-07

hinf9 28 < 1 8.52e-08

hinf10 30 < 1 4.06e-05

hinf11 30 < 1 4.41e-05

hinf12 40 < 1 7.49e-02

hinf13 30 2 7.23e-05 *

hinf14 38 < 1 9.57e-08 *

hinf15 33 1 2.15e-04 *

Name It T RDgap

infd1 30 1 2.92e+00

infd2 30 2 4.36e-01

infp1 9 1 1.95e+00

infp2 10 < 1 1.98e+00

maxG11 19 5325 2.79e-08

maxG32 m m m

maxG51 22 12100 1.96e-08

mcp100 18 7 8.00e-08

mcp124-1 18 13 2.83e-08

mcp124-2 17 13 1.87e-08

mcp124-3 17 13 2.36e-08

mcp124-4 17 14 1.86e-08

mcp250-1 19 143 5.31e-08

mcp250-2 18 138 4.09e-08

mcp250-3 18 138 6.58e-08

mcp250-4 18 140 5.59e-08

mcp500-1 21 1426 2.83e-08

mcp500-2 20 1410 2.71e-08

mcp500-3 19 1347 4.02e-08

mcp500-4 19 1333 1.25e-08

qap5 19 < 1 1.60e-06

qap6 26 3 5.62e-08

qap7 28 14 7.95e-08

qap8 27 48 9.04e-08

qap9 28 128 7.89e-09

qap10 22 246 4.61e-08

qpG11 m m m

qpG51 m m m

ss30 27 655 9.30e-08

theta1 22 2 8.78e-08

theta2 22 33 2.01e-08

theta3 20 279 6.08e-08

theta4 22 1523 3.10e-08

theta5 21 4975 2.22e-08

theta6 24 16751 2.20e-8

thetaG11 28 11021 4.89e-08

thetaG51 m m m

truss1 24 < 1 4.07e-08

truss2 19 1 7.57e-08

truss3 23 < 1 3.83e-08

truss4 23 < 1 8.57e-08

truss5 22 3 3.38e-08

truss6 25 3 6.44e-08

truss7 24 < 1 3.72e-09

truss8 25 39 1.16e-08

Table 3: BNT algorithm
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6.3 Analysis of the results

To help the analysis of the previous tables, for each class of problems, we will construct graphics
with information about the time and the number of iterations. As the running times of the
problems in hinf, inf and truss classes are very small, we do not present the corresponding
graphics with the time information. Furthermore, when, for a certain class, the amplitude of
the interval of time is too big we will present two graphics to facilitate the reading.
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Figure 2: Time, in seconds, for the arch
class.

As we can observe in Figure 1, for the arch class the algorithms that performed less and
more iterations were PCC and BNT, respectively. From Figure 2 we can conclude that BHKM
was the fastest while BNT was the most time consuming.
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Figure 3: Number of iterations for the control class.

Consider now the control class. In Figure 3 is possible to observe that PCC was the
algorithm with less iterations while the other two presented similar means for the number of
iterations. For the time, Figures 4 and 5, all the algorithms presented identical means.
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Figure 5: Time, in seconds, for the problems
control7 to control11.
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class.

For the equalG class, the algorithm with less iterations was BNT while the one with more
was BHKM, Figure 6. These positions were inverted for the time, Figure 7.
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Figure 8: Number of iterations for the gpp class.

Relatively to the gpp class, we can observe in Figure 8 that the algorithms with less ite-
rations were BHKM and BNT, being the first one the fastest and the second the slowest,
Figures 9 and 10.
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class.

Consider now the maxG class. Due to memory problems, it was not possible to obtain
any results for maxG32 with BNT. But, in general, this algorithm was the worst one for the
remaining problems. PCC was the algorithm that presented less iterations, Figure 11. PCC
and BHKM spent similar amounts of time, Figure 12.

For the mcp class, in Figure 13 is possible to see that PCC was the algorithm with less
iterations while BHKM was the one with more. But, this last one was the fastest, being BNT
the most expensive, Figures 14 and 15.

For the qap class, the best and the worst algorithms were PCC and BHKM, respectively,
Figures 16, 17 and 18.
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Figure 16: Number of iterations for the qap class.
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Figure 17: Time, in seconds, for the problems
qap5 to qap7.
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Figure 18: Time, in seconds, for the problems
qap8 to qap10.
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Figure 19: Number of iterations for the qpG class.
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Figure 20: Time, in seconds, for the qpG class.

Consider, now, the qpG class. Due to memory problems, it was not possible to obtain any
results with BNT. Once more, BHKM was the algorithm with more iterations, Figure 19, but
also the fastest, Figure 20.

From Figures 21 and 22 is possible to conclude that, for the ss30 problem, BHKM and
BNT were the algorithms that presented less iterations being the first one the fastest and the
second one the slowest.
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Figure 24: Time, in seconds, for the thetaG class.

As it happened before, due to memory problems, it was not possible to obtain any results
for thetaG51 with BNT. For thetaG11 this algorithm was the most expensive. As we can see
in Figures 23 and 24, the BHKM algorithm was the best one for the thetaG class.
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Figure 25: Number of iterations for the theta class.

From Figures 25, 26 and 27 we can conclude that PCC was the best algorithm for the theta
class, while BHKM was the one with more iterations and BNT was the slowest.
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Figure 26: Time, in seconds, for the problems
theta1 to theta3.
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Figure 27: Time, in seconds, for the problems
theta4 to theta6.

It remains to analyse the results relating to truss, hinf and inf classes. As these problems
are of quick resolution we decided to study only the results about the number of iterations.
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Figure 28: Number of iterations for the hinf class.

As we can see in Figure 28, for the hinf class the algorithm that presented less iterations
was BNT while the one with more was PCC.

For the truss class, Figure 29, the algorithm with less iterations was PCC and the one with
more was BHKM.

For the infd problems, Figure 30, BHKM was the algorithm that took less iterations while
BNT was the one with more. Finally, for the infp problems, Figure 31, BNT was the best
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Figure 29: Number of iterations for the truss class.

algorithm while PCC was the worst.

5

10

15

20

25

30

infd1 infd2 Mean

N
u

m
b

e
r
 I
te

r
a
ti

o
n

s

PCC

BHKM

BNT

Figure 30: Number of iterations for the infd prob-
lems.
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Figure 31: Number of iterations for the infp prob-
lems.

To summarize we can say that:

- although BHKM was the algorithm that, in general, presented more iterations it was the
fastest one;

- PCC was the algorithm that presented, for most of the cases, less iterations;

- BNT was the algorithm that spent more time.

For the classes of problems with results that satisfy all the termination criteria, the effi-
ciency of the algorithms can be measured just in terms of the two previously analysed charac-
teristics. For the other classes we considered that the efficiency should be measured in terms
of how far the solution is from satisfying all those criteria. The control is one of these classes.
For this class, PCC was the algorithm that performed better while BHKM and BNT presented
similar behaviour. For the gpp class the only algorithm that stopped without satisfying all
the termination criteria was PCC. The BHKM was the best algorithm for hinf and qap classes
while PCC was the worst. As infd and infp are infeasible problems and problems with an
infeasible dual, respectively, the values in RDgap do not mean, just by themselves, that the
results were not satisfactory. All the algorithms solved the infd problems but only BNT solved
the infp ones. Finally, for thetaG51 both PCC and BHKM presented similar results while, as
already mentioned, due to memory problems it was not possible to obtain any results with
BNT.
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7 Final conclusions

From the obtained results we can conclude that, in general, the algorithm that uses the NT
direction was the slowest and, due to memory problems, did not allow to obtain results for
the problems with bigger dimensions. It was only better than the remaining algorithms for
the infp problems. Although, for most of the problems, the BHKM algorithm needed more
iterations than the others it was, in general, the fastest. Relatively to the classes of problems
for which at least one of the algorithms ends without satisfying all the termination criteria,
although PCC was the best for control class the BHKM was superior for gpp, hinf and qap
classes, having both presented similar behaviour for the thetaG51 problem. Finally, we can
conclude that the version of our predictor-corrector variant with HKM direction is better than
the classical predictor-corrector for the generality of the problems.
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