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EDITOR'S NOTE

This number of "Investigagcao Operacional" is totally
dedicated to papers presented at the 21st meeting of the
EURO Working Group on Multicriteria Optimization, held in
March 1985 in Lisbon.

It has not been usual that these meetings originate a
common publication for the papers presented there, just as
it has not been usual that this journal dedicates a whole
number exclusively to papers from one single meeting or
conference; but it has seemed correct to make this sort of
"commemorative issue'" related to what has been the first of
a series of 4 conferences held in Lisbon within about one
year, all with the active involvement of APDIO, the Portu-
guese Association for the Development of Operations Research,
the last of those four being EURO VIII, to be held in
September 1986.

This series of conferences is a very visible sign of a
portuguese approximation effort in direction of the
international Operations Research community, where our
members are trying to take a more active role 1in the
production of new ideas and in the shaping of decisions.
Geographical distance and financial constraints are
liabilities we have learnt to live with, against which we
will have to play with our energy, initiative and ability to

communicate with different peoples.



"Investigagao Operacional", the scientific journal of
APDIO, ié an important tool in this effort: interchange
agreements exist with more than 20 national or regional
O0.R. associations from other countries, and by publishing
papers in English, French, Portuguese and Spanish, it can
reach a vast catchment area with a great production

potential. Indeed by regularly publishing papers from

varied countries, we are fulfilling one of our major
objectives, namely providing the porfuguese technical
community (paper authors or others who are "only doing

applications") with a wide spectrum of experiences and

innovation coming from many different origins,

The papers published here afe what has been considered
an interesting Sample from all the papers presented at the
meeting and submitted by the authors. Time limitations have
not allowed for a .classical refereeing procedure, papers
being published as received or with only minor "polishing"
in language. For this reason, papers with complex and
unclear notation or language have not been included in this
issue. It is hoped that the selection made is balanced and
the participants in the meeting feel it constitutes a

representative and unbiased sample.

The Editog

Jose M el Viegas
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COLLECTIVE BARGAINING, TRADE OFF AND CONFLICT ANALYSIS
IN MULTIPLE CRITERIA DECISION MAKING

Prof. Dr. W.K. Brauers, Antwerp University

1. THE PROBLEM

Conflict analysis, collective bargaining, trade off etc.
are terms connected to group decisions. The human beings
belonging to. the group 1like to follow different targets
(multiple criteria) for which different solutions (actions)
are possible. It is a problem of multiple criteria decision
making, trying to come as nearby as possible to the ideal

multi-optimal solution.

Going from the more simple to the more sophisticated
items, we move facts to value judgments and finally to

group interests.

2. MULTIPLE CRITERIA DECISTION MAKING ABOUT FACTS

If the multiple criteria existing dinside a group concern
a misconception about facts, information will reduce the
multiple criteria problem to one single criterion: the

insight into the common knowledge about facts.
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Sometimes information about complicated systems, such as
some insight in human behaviour, can be difficult. Systems
Analysis, and in particular the several methods of simula-
‘tion, can be helpful for that ocasion, as we described elge-

where (1).

Next step in this taxonomy concerns the multiple

criteria decision making in value judgments,

3. MULTIPLE CRITERIA DECISION MAKING IN VALUE JUDGMENTS

If these value judgments are purely qualificative, no
optimality is possible, but if quality can be translated in
one or other form of quantification i.e, either cardinal or

ordinal, optimality considerations are applicable,

Each individual 1is sure about his values but uncertain
about his knowledge of facts. Each individual has his own
prejudices. An individual, for example, may not know who
the Prime Minister of Great Britain is but will be 100%
sure that communism or fascism is 100%Z wrong. This means
that problems arise for posing broad issues and for obtaining
judgmental data. Mostly the knowledge of a group 1is needed

in that case and committees and round-table discussions are

not very suitable for the discussion of very broad issues.
The main disadvantages have been outlined by E.S. QUADE in
the following way:

"In broad problems the range of expertise required is
not likely to be provided by a single  individual. Almost
inevitably a variety of expert advisors needs to be
consulted. Experiments have shown that their best use is

not the traditional one of having the issues presented to
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them and debated in open round-table discussion until a
consensus emerges or until they arrive at an agreed-upon
group position. Committees, for example, often fail to make
their assumptions and reasoning explicit, Sometimes the
opinions of dissenters are not even recorded. What is
needed is a way to avoid the psychological drawbacks of a
round-table discussion - such as the "bandwagon" effect and
the unwillingness to abandon publicly expressed opinions -
and thus to provide a setting in which pros and cons of an

issue can be examined systematically and dispassionately" (2)

Moreover, in committees or round table discussions the
opinions of very interesting but rather shy persons are
often not even heard. A first lesson to be drawn is that
the exercise has to be anonymous "pour ne pas perdre la

face", for not loosing his face. Check 1lists of hundreds of

items presented to a lot of people are less valuable for
broad issues and judgmental data. Who draws up the 1list for
these problems and which people check the lists for occur-

rence or non-occurrence?

JANTSCH, «citing VON FANGE, gives the following basic

rules for brainstorming sessions:

"1. State the problem in basic terms, with only one

focal point;
2. Do not find fault with, or stop to explore, any idea;

3. Reach for any kind of idea, even if its relevance may

seem remote at the time;

4, Provide the support and encouragement which are so
necessary to liberate participants from inhibiting

attitudes" (3).
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In any case an efficient reporting system is necessary
to memorize the ideas (stenography or taperecording).
Besides this straight brainstorming JANSTSCH cites some

variations,

"Whereas straight brainstorming aims primarily at a

harvest of new ideas, the "buzz group" technique seeks group

consensus among approximately six people.

The operational creativity _approach introduces the

refinement that only the group leader knows the exact
nature of the problem and structures the discussion s6 as

to arrive at a solution - only one is sought" (3).

In the last variation the objectivity of the group leader
is doubtful and in general brainstorming is insufficient for
tackling broad problems and for obtaining judgmental data.
Indeed opinions can be too divergent for a consensus to be

reached.

Let us limit ourselves to future development. For future
development it depends which universe we are looking after.
In a quasi-certain universe techniques such as extrapolation
will lead to one single criterion, which is not the case

under uncertainty for the future, when so called nominal

techniques have to be used.

Questionnaires fail if broad issues are involved.

Indeed opinions in this case can also be too divergent for
a consensus to be reached. The steering group may well make
too subjective a summary when analizing the questionnaires.
Moreover, questionnaires are considered to be samples for a

certain population (polls).
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A sample is drawn from the population and the opinion of
the sample reflects the opinion of the population. The
average of a variable in the sample is considered to be an
estimation of the average of the variable for theAPopulation

concerned.

In this way the "Furopean Coordination Centre for
Research and Documentation in Social Sciences" in Vienna
interviewed 9,000 persons in ten countries, aged between 15
and 40 at the time of interview, an age group which on the
average will reach the year 2,000 (4). More than 507% of
those interviewed do not expect a world war before the year
2,000. If the stratified sampling is correct (9,000
persons, 10 countries chosen from all over the world), the
majority of the world's population aged between 15 and 40
does not expect a world war before the year 2,000, Besides
the cost of the operation, which took three years (1967~
1969), a large minority of the age group in question
expects a world war, while the question remains unanswered
whether there will be a world war or not. The assumption of
the steering group that the future state of the world will
largely depend on what people want it to be is purely
wishful thinking. In this way we do not ‘even know what the
probability is of a possible world war before the year
2,000, On such a question there will be no convergence
between the opinions of the 9,000 persons. Finally are
these persons aged from 15 to 40 able to make a valid
judgment on such a question and is this judgment valid for

the world's population at large?

Is there not something 1like expert knowledge? Is a
discussion not necessary and how has this discussion to be

organized?

The Delphi Technique tries to improve either the panel or
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THE PROBABILISTIC UNIVERSE

PROBABILITY MODIFIED

TOTAL RETURNS (000's)
mnnmu Decision point NO COMPETITION
Gain-$1.000.000/year $300
ﬁuv Chance event Product succeeds as for five years(.1)
estimated \
A u Numbers are wwovmcwwwﬂwmm Gain-$1.000.000/year MOKHWMWMMOMOO\ . .89
of chance event occurring for five years (.6) ain . year tor :

five years (.9) -
NO COMPETITION

Sales slow Gain-$200.000/year for 20
Permanent tooling Gain-$200.000/year five years (.1)
inveéstment $2.000.000 for fi .2
S laction Hm or five years (.2) COMPETTTION
Product fails mmwblmHN0.000\%mmH for 108
Loss-$2.000.000 (.2) five years (.9) 400

TOTAL FOR PERMANENT TOOLING $1.918

NO COMPETITION
(ain-$200.000/year for 60

Product succeeds as five -years (.1)
estimated
Gain-$200.000/year moxmeMwwowoo . 297
Temporary tooling for five years (.6) mmwul : ( @vOH
investment $100.000 1ve years (.
(action 2) NO COMPETITIO
Sales slow Gain-$50.000/year for 5
Gain-$50.000/year for five years (.1)
five years (.2) COMPETITION
Product fails mewlmmo.OOO\%mmw for 18
Loss-$100.000 (.2) ive years (.9) 20

TOTAL FOR TEMPORARY TOOLING $360
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committee, or the questionnaire approach by tacking anonymity
and expertise into consideration. Delphi is considered as
bringing convergence in opinions. Delphi was so named after
the Greek oracle, as it was first thought of as a tool for

better forecasting e.g. technological forecasting (5).

How is Delphi introduced into Multiple Criteria Decision
Making? It is the case when alternative policies are
considered towards alternative futures in probability,

possibility or completely uncertain universes.
3.1. Value Judgements in a Probabilistic Universe

In the following example of a decision tree from the
tooling industry, two actions are considered under the
following criteria: success of products, slowing down of
sales and failure of products, each time under competition
and without competition. It concerns the introduction of a
new product with the decision to tool up for it in a per-
manent way with a high investment cost but low manufacturing

cost or a temporary tooling in a reversed situation (6).

The probabilities have to be found after several Delphi
rounds between experts of the industry, of technology and

of marketing /1/.

/1/ It may be recalled that the sum of the probabilities

has to be equal to one.
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3.2. Value Judgements in a Possibility Universe
3.2.1. The example of trend impact analysis

In this case of trend impact analysis several actions or
policies are considered which may maintain or change the
slope to a certain extent of the historical trend (see next
graph). The possibility-ratios are once again found in a

delphi-exercise /2/.

A unique solution is found by considering as much by
considering as much actions or policies as possible and

then by taking the median.
3.2.2. The example of Cross-Impact Analysis

In cross-impact analysis several actions or policies are
matched against several desired events by possibility-

ratios found in a delphi-exercise (see next graph).

Solution is possible either voluntaristic or probabi-

listic.

Voluntaristic means that thresholds are put e.g. desired
event II has to have a probability of occurrence of at

least 0.60. At that momert only policy B is possible.

/2/ In a possibility wuniverse the possibility-ratios are
not adding up to one. Probabilities are then the sum of the

occurrence plus the non-occurrence of an event.
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POSSIBILITY UNIVERSE AND CROSS-IMPACT

CRITERIA DESIRED DESIRED DESIRED
ACTIONS EVENT EVENT EVENT
I : II ITI
POLICY A PO = 0,60 PO = 0,50 PO = 0.60
POLICY B PO = 0,50 PO = 0,60 PO = 0,60

If the solution may be probabilistic, we proposed else-

where an algorithm for solving the cross-impact problem (1).

The multiple <criteria decision making becomes much more

difficult if it concerns personal and commom interests.

Let us call this application "multiple <criteria decision

making about group benefits".

4. MULTIPLE CRITERIA DECISION MAKING ABOUT GROUP BENEFITS

Under this heading a study is made about group versus
personal benefits. 1In this connection the term "group"
covers a variety of meanings from small groups of persons
and pressure groups to net social benefits -~ being the
difference between total social benefits and social costs -

and .external economies. Once again, optimization is aimed at.
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4.1, The Pareto-optimum

Generally one goes out from the so-called Pareto-optimum
in order to have an insight in this optimization problem.
We thought it useful to go back to Pareto in order to see
what he exactly meant by this optimum. He says that the
collective maximum of wutility is reached when no departure
from this position is possible without harming one individual

to the benefit of another /1/.

/1/ Pareto rather speaks of "Qphélimité" instead of
"utility". "L~ Ophélimite ... consiste dans le plaisir que
procure la quantité totale de 1la marchandise A possedee".

(V. PARETO, Manuel d” Economie Politique, traduit sur

1 edition italienne par A. BONNET, revue par 17 auteur,
deuxieme ed. Paris 1927, p. 263). On p. 169 n.l Pareto

however puts "ophélimite" equal to "utilite",

He defines his famous optimum as: '"Nous dirons que les
membres d  une collectivite jouissent, dans une certaine
position, du maximum d’ ophélimité, quand il est impossible
de trouver um moyen de s“éloigner tres peu de cette position,
de telle sorte que 1° ophélimité dont jouit chacun des
individus de cette collectivite augmente ou diminue. C™ est-
~a-dire que tout petit déplacement a partir de cette
position a necessairement pour effect d” augmenter 1° ophe-
limité dont jouissent certains individus, et de diminuer
celle dont jouissent d” autres: d &tre agréable aux uns,
désagréeable aux autres.

(V.PARETO, op. cit. p. 354).
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Pareto proved that free competition on the market leads
to this optimum /1/. As all the so-called classical authors
in economics, he defines free competition as the situation in
which neither the suppliers nor ‘the demanders can influence

the price on the market /2/.

The optimum is not automatically reached after Pareto,
if this market mechanism is absent. It 1is so in the

following cases:

1) in the monopoly situation, where the monopolist
himself will fix prices and quantities beneficial for

himself but detrimental for the others /3/:

/1/ V.PARETO, op.cit. pp. 354-361.

/2/ "Le type (I) des phénoménes est donné par ceux dans
lesquels 1~ individu accepte les prix qu il trouve sur le
marche et cherche & satisfaire ses gouts avec ces prix.
En ce faisant, il contribue, sans le vouloir, a modifier
ces prix, mais il n” agit pas directement dans 1 intention
de les modifier. A un certain prix il achéte (ou il vend)
une certaine quantitée de marchandise; si la personne avec
laquelle il contracte acceptait un autre prix, il acheterait
(ou i1 vendrait) une autre quantite de marchandise. En
d” autres termes, pour 1lui faire acheter (ou vendre) une
certaine quantite de marchandise, il faut pratiquer un
certain prix." (op.cit, p. 209)

"Nous avons déja vu que, dans la realitée, le type (I)
correspond a la libre concurrence et que le type (II)

correspond au monopole.”" (op.cit. p. 210)

/3/ V.PARETO, op.cit. p. 210 and p.356
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2) in the collectivistic society where the state will

fix prices in order to reach the optimum /1/;

3) in the case of all kind of pressure groups /2/;

/1/ "le type (III) correspond lui aussi au monopole; mais
il se distingue du type (II) par le but qu” il se propose.
Le probléme que devra se poser 1° Etat socialiste est le
suivant; "Quel prix dois-je fixer pour que mes administres
jouissent du bien-&tre maximum compatible avec les conditions
dans lesquelles ils se trouvent, ou que je trouve bon de leur

imposer?" (op.cit. pp. 210-211).

Under the heading "1 équilibre dans la sociéte collec-
tiviste" Pareto discusses the problems in relation to the

optimum in the collectivistic society (pp. 362-364).

/2/ "En reéalité, les syndicates ouvriers, les producteurs
qui jouissent de 1la protection douanieére, les syndicats de
négociants qui exploitent les consommateurs, nous four-
nissent de nombreux exemples dans lesquels 1les coefficients
de production sont déterminés dans 1le but de favoriser

certaines collectivités partielles.

I1 faut remarquer que, sauf certains cas tout a fait
exceptionnels, ces valeurs de coefficients different, et
souvent différent beaucoup des valeurs qui procurent le

maximum d° ophélimité a la collectivite tout entiere.

(op.cit., p.365)
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It seems that Pareto was very prophetic for the actual
situation as his original work of the '"Manuel d° Economie
Politique" was written in Italian in 1906. In the 1line of
Pareto” s thoughts problems of optimization arise for
nonmarket goods and services, also called social or
collective goods and for - the human being in a rationalized
economic system. It is also possible that group benefits
are larger than the sum of the corresponding individual
benefits. It is the case with external economies and with
synergy effects (7). An application of the Pareto-optimum
in a transitive way concerns the rules of the "General
Agreement on Tariffs and Trade", authorizing customs unions
on condition that the common tariff does not exceed the
average tariffs of the potential member countries (8). A
more qualitative application is the federalization approach,
as launched by H.BRUGMANS, stating that divergent ideas and
principles have to be federalized more or less after the

greatest common divisor (9).

The Pareto optimum however forms a .small basis for any
activity; in fact its application would mean immobilism
instead of action. In an active policy one can’t exclude

winners opposite losers,
4.2. Optima away from the Pareto-optimum

The KALDOR - HICKS ‘test states that a situation is
esteemed better than a previous one, if the sum of the
benefits of the winners 1is llarger than the sum of the

losses of the losers (10).

The VINER-principle in international trade, stating that
in forming a customs-union the total trade creation has to
be larger than the total trade diversion (11), is an

application of the Kaldor - Hicks test.
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Unlimited application of the test 1in politics 1leads to
despotism towards minory groups. This is <certainly disas-
trous, when a dictator, like Hitler or Stalin, determines the

total benefit for the society.

4.2,1. The treshold method

An answer to this extreme situation is given by a
nontransitive approach, in which tresholds of human rights
are fixed in order to protect the individual. In a democracy
laws are .the result of the majority vote, but the treshold is
formed by the constitution which in the first place is a

declaration of human rights, protecting each individual.
4.2.2. The Nominal Group Techniques

The Nominal Group Techniques as cited above, su;h as
delphi, trend impact and <cross impact analysis, can be
useful as applied in a policy of group benefits, creating
more convergence between extreme positions, contrary to

meetings and polls.

It is certain that a lot of firms in the United States
and in Western Europe were using delphi techniques to test
several strategies based on divergent interesﬁs or to apply
it in participatory planning, though no communication is made
to the outside world. The first known application is made at
T.R.W. of the Hughes-group in California (1969), while Agfa-

-Gevaert, Belgium was also active in this field (12).

4.2,3. Antagonistic Criteria

An example of antagonistic criteria is the "Ooster-

Schelde" problem. In 1953 the islands of the province of
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Zeeland in the Netherlands were flooded causing the death of
thousands and thousands of persons and billions f1, of
material 1losses. Closing the islands  with one huge dam,
making the islands a part of the continent and changing
the "Ooster-Schelde" estuarium in a huge swveet water
reservoir presented a good>solution for the security people
but was found very harmful by the ecologists. Higher dikes
on the islands were accepted by the ecologists but not by
the safety people. In this way the '"Ooster~-Schelde" problem
was a good example of antagonistic criteria defended by

several groups.

The breakthrough would come by finding a solution
acceptable for the parties and more or less satisfying the
criteria. It means an effort of creative thinking. Brain-
storming as cited above may be wuseful in this context,
but also the Scorecard method. The Scorecard method was
invented by Rand Corporation in the case of the Ooster-
Schelde (13). Al1 the advahtages . and disadvantages of all
the propositions were enumerated in a systematic way by
tables, graphs etc. On basis of this dinformation, new
solutions were 1looked after bringing a kind of greatest
possible divisor for all criteria. The solution found
consisted of storm dams in front of the islands which would
weaken the floods, but 'keep the Ooster-Schelde as an open
estuarium with salt water. This solution was satisfactory
to both security officers and ecologists, and the proposition

finally passed in Dutch Parliament.

Perhaps one criterion was however overlooked at that
time viz. the increase in costprice of such gigantic

hydraulic public works.

We tried to bring a taxonomy about group decisions under

multiple criteria. We do not know if we were complete. We
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hope to have many reactions in order to make this taxonomy

much consistent and complete.
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DEUX PETITES METHODES MULTICRITERES D!'USAGE COURANT

Alain Scharlig

HEC Lausanne

Pratiquer 1le multicritere, c'est aussi produire - ou
proposer - des méthodes d'usage courant, notamment quand
le recours aux grands raisonnements est exclu du fait de
1'interlocuteur (qui ne veut pas, ou ne peut pas, utiliser
une methode élaboree). Deug exemples récents méritent

d'&tre racontés aux membres du Groupe européen.
OFFICE DE PLACEMENT, AGENCE MATRIMONIALE, MEME COMBAT!

La premiere application se situe dans un office de
placement, qui met en relation des employeurs potentiels et
des demandeurs d'emploi. Cet office désirait automatiser
la .consultation de son fichier des candidats. L'informati-
sation n'a posé qu'un probléme: on s'est rendu compte que
la comparaison, entre les exigences -.de ljemployepr et les
caractéristiques des candidats, avait/gté, faife jusqutici
avec 1l'esprit de synthése et de flou dont est capable le
cerveau humain ... ce qu'une machine a beaucoup plus de peine

. e .
a realiser.

La question a ete traitée en multicritére. On a divise
les exigences de 1'employeur - les criteres - en trois cate-
gories: 1'impératif, dont l'absence entraine obligatoirement
1'élimination du <candidaty 1le hautement souhaitable, dont
1'absence chez le candidat seralt g@nante, mais sans entrai-
ner néceséairement son élimination; et enfin 1le souhaitable,
dont la présence augmenterait 1'intérét porté au candidat.

Au moment du passage en revue d'une fiche, on  utilise un
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premier crible oui-ou-non, qui ne retient que les candidats

presentant les caracteres imperatifs. Sur ces candidats,
: N . o

on compte pour chacun le nombre de caracteres hautement de-

. H @ N o -
sirables qu’ls presentent, et ce nombre sert a operer un

classement, du '"meilleur" candidat au "moins bon". Enfin,
toujours au moment du passage en revue, on note les
caracteristiques simplement desirables préesentées par

chaque candidat, et ce compté—l§ permet de départager les
ex-aequo du classement precedent. Les candidats sont alors
présentés a 1'employeur potentiel dans 1'ordre donne

par ce classement.

) . . , - R P -
L application, qui tourne a Geneve, a ete vendue a
une agence matrimoniale de Francfort : du point de vue

multicritere, le probléme est le méme!
ABRTS DE PROTECTION CIVILE : UNE SOMME BIAISEE.

La Suisse se préoccupe de mettre sa population civile
a 1'abri en cas de guerre (conventionelle ou nucléaire)9
Les abris sont longs et chers a construire (la couverture
actuelle est de '70Z de 1la population), ce qui fait que

certaines communes sont - en deficit. Pour le cas od un

| - . - . N
conflict se presenterait a court terme, elles doivent
donc prevoir des "abris de fortune" ui seraient mieux

9
que rien. Encore faut-il étre certain qu'on puisse y

mettre des gens a 1'abri sans accrofte les risques qu'on
leur fait prendre, Comme ces risques peuvenf étre de
diverses espéces, car on ne sait pasal'avance lequel se
présentera, le probleme est multicritére : les abris de
fortune doivent presenter une bonne protection vis-a-vis

de plusieurs risques differents.

On a cherché une méthode d'évaluation simple, qui

puisse &tre pratiquee sans difficulte par un responsable
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local de 1la Protection civile. La formule proposée par

1'0ffice fédéral de 1la protection civile recourt a la
somme de notes - dont on connait bien les défauts dans le
Groupe -~ mais en corrigeant 1le plus gros de ces defauts

qui est la compensation d'une mauvaise note par une bonne :
il ne faudrait pas, en effet, retenir un abri parce qu'il
est une excellente protection contre certains risques,
alors qu'il serait mauvais vis-a-vis d'autres risques.

Pour ce faire, 1'echelle des notes retenues a ete :

tres bon 1
bon
utilisable 5
mauvais 40,
Les critéres étant au nombre de 10, et 1'addition ne

faisant 1'objet d'aucune pondération, on applique ensuite

une échelle tres restrictive pour le jugement global :

10 ou 11 points tres bon
12 a 20 points bon

21 a 50 points utilisable
plus de 50 points mauvais.

On voit qu'en donnant la note 40 pour "mauvais", on rend
la somme non compensatoire : un abri reputé mauvais a un
seul point de vue ne peut é&tre declaré globalement ni
treés bon ni bon, et se trouve méme a la limite entre
l'utilisable et 1le mauvais s'il a éte trés bon a tous

les autres points de vue (son total étant alors de 49),

REFERENCE
SCHARLIG, Alain - Decider sur Plusieurs Criteres,
Presses polytechniques romandes, Lausanne, 1985, 250
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A NOTE ON THE PAY-OFF MATRIX

IN MULTIPLE OBJECTIVE PROGRAMMING

MATTHIJS KOK - DELFT UNIVERSITY OF TECHNOLOGY

JAAP SPRONK - ERASMUS UNIVERSITY ROTTERDAM

ABSTRACT

The pay-off matrix is a well-known device in multiple
objective programming. It helps to understand the conflicts
between different goal variables. Furthermore, the pay-off
matrix constitutes the Basis for the calculation of fre-
quently used references vectors such as the ideal (utopia)
vector and the nadir vector. Unfortunately, when the separate
optimization of the individual goal variables does not result
in unique optimal solutions, the corresponding nadir vector
is not uniquely defined.Ignoring this phenomenon may have a
serious effect on several multiple objective programming
methods. In this paper we re(de)fine the notion of nadir vec-
tor in order to take account of / the possibility of alterna-
tive optimal solutions. We also present a procedure which

generates this uniquely defined nadir vector.
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1. INTRODUCTION

One of the key concepts in multiple objective optimization
is the pay-off matrix. The elements of the pay-off matrix P

are defined as : p = gi(x_J), i, 3= 1, vve, m, where

gi(x),i = 1l,.00,m ;ﬂe the goal variablgs to be maximized as
functions of the instruments x, and x~J denotes the instrument
vector which minimizes the j-th goal variable within the
feasible region K. The pay~off matrix is a valuable tool in
investigating .the conflicts between the goals of the decision
problem at hand. Two important vectors which can be derived
from this matrix are the ideal (utopia) vector g*:(g*l, N

g* ), with :
g¥. = g.(x J.) jo=1 m
j j 9 9 e ey

and the nadir vector n=(n1, oo oy nm) with

; -i .
nj= . max 8j(x ), i=1, ooy I,

For example, given the pay-off matrix

Maximize

g, g, 84 8,
8, 7 9 8 10
8, 9 3 15 20
6 4 1 4

g, 100 95 50 10
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the ideal vector (g*) and nadir vector (n) can be determined

as

g* = (7,3,1,10)
and

n = (10,20,6,100),

Both the ideal and the nadir vector are frequently used

in interactive methods (e.g. in STEM~type methods) .,

An often overlooked problem is that the pay-off matrix is

J may produce the

not necessarily unique because different x
same g*j value, As a consequence, the nadir vector is not
necessarily wunique either. In this paper we address this
problem by first presenting two examples with non-unique
nadir vectors (Seczion 2). Next, we re(de)fine the concept of
the nadir vector in Section 3. A procedure to determine the
nadir vector is given in Section 4. In - the final section we

discuss the computational complexity of the proposed pro-

cedure.
2. NON-UNIQUE PAY-OFF MATRICES

The possible implications of a non-unique pay-off matrix
for the <calculation of the nadir vector can best be
demonstrated by means of two simple examples. In both

examples there is a set of 'possible nadir vectors, only one

of which is the "true" one. In this section we will use
intuition to determine the "true" nadir vector. In the
following section this notion will be more precisely
defined. The first example shows that a randomly chosen

nadir vector may have higher values than the true nadir

vector (assuming all goal variables are to be minimized).
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In the second example we show that a randomly chosen nadir
vector may have lower values than the true nadir vector

(again assuming all goal variables are to be minimized).
Example 1

In Figure 1, the set "of feasible solutions of a given
multiple objective programming is represented in goal value:
space . Clearly, there is only one solution (B) yielding
the optimal goal value g*z. In contrast, all solutions on
the line segment (Cl’ C2) are optimal with respect to
gl(x). If no attention would be paid to the non-uniqueness of

92
y
104

FIG. 1
g;‘ =24

g?:é
the optimum for goal variable gl(x)-different pay-off ma-
trices and, consequentely, different nadir vectors might re-

sult. In this case, we might have as pay-off matrix either
P1 = or PQ =
with corresponding nadir vectors

n; = (6,5) or n, = (6,10).

The fact that C1 dominates all alternative solutions on
the line segment (Cl’ C2) is an intuitive ground to define

n, as the "true" nadir vector. In order words, if - the nadir
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values would be imposed as constraints (e.g. in STEM-type
methods), the nl—values would exclude a larger number of
inferior (dominated) solutions from the remaining set of
feasible solutions than all other possible nadir vectors. At
the same time, the nl-values would not exclude any efficent

solution.
Example 2

The second example concerns a problem described in Kok,
1984. In this problem, each of three goal variables 1is to
be minimized. The optimum of the first goal variable is
unique whereas the optimum of both other goal variables is
non-unique. Below we summarize the alternative goal vectors

(corner solutions) yielding the optimal goal values.

®
81 8%9 g*3
g, 28.75 30 30.5 29,375 32.75 28,75 32.5
89 250 5 5 225.5 120.5 250 133.3
g3 0 50 45 0 0 0 0
On basis of these solutions, eight different pay-off
matrices can be constructed, resulting in six different

nadir vectors. Apart, from the goal vector (32.5,133.3,0),
all alternative solutions are efficient. The "true" nadir
vector would (intuitively) be defined as the vector of
maximum values obtained within the given set of efficient
goal vectors. That is, the true nadir vector would be

ng o= (32.75,250,50).

‘Notice that if any of the other goal vectors would be

selected as nadir vectors and if the values of such a nadir
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vector would be imposed as constraints, a subset of the
efficient set would be excluded. For instance, the values of
the potential nadir vector (32.75,250,45) would, if imposed
as constraints, exclude the goal vector (30,5,50) which is

nonetheless an efficient solution.
3. CELLAR, NADIR AND PESSIMISTIC VECTORS

To solve the problems sketched above, we need a more
precise definition of the nadir vector <concept. In the
remainder of the paper we will assume that all goal
variables gi(x), i=l,...,m, are to be maximized within the
feasible region K. The efficient set of decision problem is
denoted by E. In addition, we define Ki={x|xeK/\gi(x)=g*i},
with g*i = max gi(x).

xek
Furthermore, let Kj|i={x|xeKiA gj(x)=g*j|i}with g*jli =
= max g.(x);
x € K,
i
Kklj|i={x|xeKj|iAgk(x)=g*kIjli} with g*k'jli = :f; T.(x); etc.
jli

Next, we define the nadir vector n as the vector of goal

values of which the j-th element is given by :

nj = min {gj(x)},
xek
with K = U K .
il ... i
i, = 1, cee, m
im =1, 400, m

Note that this nadir vector is vnicque.

It is often assumed that the elements of the nadir

vector represent the minimal values of the goal variables
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over the entire efficient set. In many cases this is not
correct (even not with the precise definition of the nadir
vectof), as is shown by Dessouki et.al., 1979, Spronk, 1981,
and Weistroffer, 1983, Therefore, we define the cellar vector
¢ as the vector of which the elements are the minimal values

of the goal variables over the entire efficient set:

Cj = min {gj(x)}, i=l, .., moe
xeE

As mentioned above, for the redefined nadir vector nj > cj
for j=l,...,m in the general vector maximization problem.

The elements of the nadir and cellar vector can be seen as
parameters of the decision problem at hand, which - as such -
have nothing to do with the preferences of the decision-
~maker. For the case the decision-maker has defined a series
of minimimally required goal values, we propose to use the
term pessimistic vector. The elements of the pessimistic
vector p are the lowest goal values which the decision-maker
considers to be acceptable. Obviously, the decision-maker may
choose any (feasible) value of" pj. That is, he may choose
pj < Cj? Cj < pj ¢ n,, or pj > nj..If the decision-maker
does not exactly know what he wants, one should be careful in
defining the p,-values for him. In well-defined models, it is
reasonable to choose pj = ¢,, j =1,...,m. However, by
choosing pj > Dps j =1,...,m (with n an arbitrary nadir

vector) one runs the risk of excluding efficient solutions.:
4 . DETERMINATION OF THE NADIR VECTOR

The definition of the nadir vector suggests that it is
necessary to solve a great number of optimization problems.
However, if the solution of one of these problems - e.g.
max gé(x) - is unique, then it is immediately clear that this

x €K
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solution is the only feasible vector in Ki ool imullj,i1
% j,u.on,,imﬂlﬁj. This means that a teét, whether the
solution of the optimization problem at hand is wunique or
not, may reduce the number of optimization problems consider-

ably.,

START
define a start
nadir vector
_as_(=2,®)

max gl(x) max gz(x) max g3(x)
x € K x€ K x€ K
TEST more Uhan TEST more than TEST more than
one solution one solution one solution
in Kl? in Kz? in K.?
3
NO NO
YES
update CONTINUE update
nadir vector nadir vector
max gl(x) max g3(x)
xeE K2 X € K2
TEST more than TEST more than
ofie solution one solution
in kl|2? in KBIZ?
NO YES
CONTINUE
max gl(x)
x € K.5'2

update

nadir vector

Figure 2




INVESTIGAGAO OPERACIONAL 35

To avoid unnecessary technical details, we will not give
a formal presentation of the procedure to determine the nadir
vector. Instead, we illustrate the procedure by means of a
simple decision problem with three goal variables gl(x),gz(x)
and gg(x)° The elaboration of the procedure in this simple
case is summarized in Figure 2. First, we set all elements
of the nadir vector equal to infinity. Then, the first goal
variable, gl(x), is optimized within the set of alternatives,
K, and we test whether the solution of this optimization
problem is unique. In this example, the solution is unique.
The nadir vector is updated by taking as its elements the
values of the goal variables in this unique solution. Then
the goal variable gz(x) is optimized. Now we have alternative
solutions, by which it becomes necessary to perform another
two optimizations. From the flow-chart in Figure 2 it can be

concluded that the solution of max gl(x) is unique.

xeK2

Therefore, the nadir vector must be updated by adopting those

goal values resulting from max gl(x) which are 1lower than
xeK2

the corresponding values in the old nadir vector. The

solution of max 83 is not uniquey; so we have to perform
xeK2

another optimization : max gl(x), etc,

xeKBlz
Finally, we add a technical remark concerning the
implementation of the procedure. The test whether there are
alternative solutions or not «can be carried out with the
reduced-costs vector : 1if at least one ¢lement of this
vector related with the non-basic variables (in 1linear

programming the final row O in the Dantzig Simplex tableau,
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see e.g. Wagner, 1975) is the =zero coefficient, we have

alternative optima,

5. DISCUSSION

In this section we discuss some properties of the
procedure to determine the redefined nadir vector. First,
we discuss the computational complexity of the procedure.
It can easily be verified that ‘the structure of the
proposed procedure is a tree, where the nodes correspond to
the optimization problems. The maximum number of nodes
n{m), with m the number of goal variables, is :

m!

- m-1
n(m) = 37 =,
p:O P!

The values of n(1l), ..., n{(6) are given in table 1.

m n(m)

15
64
325
1956

N U WN

Table 1

Of course, the formula given above represents certainly
the worst case : all optimization problems in the procedure
have always alternative optima. In general, only some of
the optimization problems will have alternative optima,
limiting the number of problems to be optimized. Second, as

mentioned above, the redefined nadir vector is not equal to
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the cellar vector (Section 3). Nevertheless, the nadir
vector as defined here may constitute a good starting point
to find elements of the <cellar vector. Of course, other
starting points might be appropriate. However, the question
which is the best one cannot be answered before a good

procedure to find the cellar vector is available.
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UTASTAR : AN ORDINAL REGRESSION METHOD FOR BUILDING
ADDITIVE VALUE FUNCTIONS

J. Siskos, Technical University of Crete

D. Yannacopoulos, Lamsade, Universite de Paris

ABSTRACT

This paper presents an improved version of the UTA
method performing an ordinal regression analysis by means
of more powerful linear programming formulations. The
ordinal variable to be analysed is a weak-order relation
whereas the independent variables are criteria, 1i.e.
quantitative and/or qualitative monotone variables. The
method is dillustrated by a- simple numerical example.
Finally, experimental results are given, demonstrating by
means of three distinct indicators, the superiority of the

adjustements obtained with the new method.

Key-words : Ordinal Regression; Additive Utility; Multi-

criteria Analysis.
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1., INTRODUCTION

The problem of ordinal regression which 1is presently
dealt with the UTA method of JACQUET-LAGREZE and SISKOS (2)
is the following : Having a weak-order preference structure
(¥,Vv), with the strict preference and » the indifference
on a set of actions or objects, adjust additive utility
functions based on multiple criteria in such a way that the
resulting preference structure would be as consistent as

possible with the initial structure.

Let A = {a, b, ¢, ...} be the set of actions upon which

the preference structure is given. Let B1r 8ps ey B be a
family of n criteria. Each one is defined here, under the
form of a real valued monotone function 8; A +'E By
gi*:] &€ R in such a way that gi(a), a € A represents the

*
evaluation of the action a on the criterion 8 and Bixs 8y

respectively the level of the most and the least desirable of

the criterion.

When only one criterion is concerned, the preferences can

be explicited as following

ay b<=>g (a) > g (b) (1)

an b<=>g. (a) = g, (b) (2)

which means that each criterion defines on the set A a weak-

-order relation (p,v).

A utility function under certainty is a real valued

function u :
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n
*
X [gi*, 84 ] + R such that

i=1
ay b<=u [g(a)] > o [a(®)] (3)
a v b<=>u [g(a)] =u [a(®)] (4)
where g(a) = [g;(a), g,(a), ..., g (a)] is the profile of

the action a consequences on the n criteria.

The UTA regression aims to estimate additive utilities :

u(g) + ul(gl) + uz(gz) + ee. + un(gn) (5)
satisfying
ui(gi*) =0 ¥ i (6)
uCey ) +uy(e, ) 4 e u(g)) = 1 (7)
So, the relations (5)-(7) normalize the marginal

utilities uy and the total utility u between O and 1.

In the original version of UTA method, there exists a
unique error function O : A > [ 0,1 ] where 0(a) 1is the
amount of wutility which would be suitable to add to the
estimated utility u [g(a)] of the a action in order to make
it possible for this action to regain its rank in the weak-
order (fig. 1). This error function is not sufficient to
minimize completely the dispersion of points all around the
monotone curve of figure 1. The problem is posed by points
situated on the right of the curve, from which it would be
suitable to substract an amount of utility and not increase

the utilities of the others.
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_ranking

utility
Fig. 1

Utility versus weak order in ordinal regression

In the version of UTA ©proposed in this paper (let us
call it UTA*), we wuse a double positive error function
which permits to better stabilize the position of the

points around the curve.

So, the utility  of an action a will be introduced into
the relations (3)-(4) through u [g(a)]+ o¥(a) - o (a).

In the following section we present briefly the UTA
model as well as its improvements. Section 3 presents an
illustration of UTA*, based on a numerical example with
five alternatives and three criteria. In the 1last section
we show the superiority of the new model with respect to the

old one, based on three different indicators.
2. UTA AND UTA*

UTA uses a special linear programming formulation to

estimate the marginal utilities u, under the conditions (5)-




INVESTIGAGAO OPERACIONAL 43

(7)., This estimation 1is made after having discretized each

interval of varying criteria

® .
[6;5085 1 = [egs = 8]» --vs 8512 84] (8)

and introduces the constraints ui(gij+1) 2 wi(gij) in order
to preserve the monotonicity of the criterion. The number of
the equally distant point di is calculated by an algorithm as
far as information is available. For the quantitative cri-

teria we have employed the technique of linear dinterpolation.

According to conditions (5)-(7), the original UTA al-

gorithm runs in four steps

1) Expression in the order imposed by the initial weak-
order (»,Vv) the utilities of the alternatives u[&(a)],

a ¢ A in terms of additive marginal utilities ui(giJ).

2) Going from head to tail of the weak-order by writing
for each pair (a,b) of consecutive actions, the ana-

lytic expressions:
A (a,b) = u [g(a)] - u [a(0)] + o(a) - o(b) (9)

The number of these expressions is equal to the number

of actions minus 1.
3) Solving the dual of the linear programme :
Minimize F = I o(a)

achA

under the constraints (according to step 2)

v

A (a,b)
A (a,b)

§ if a» b
O if a v b

L
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j+ly _ J , ,
u; (g7 7) - uy(gyY) 2 0 ¥ i and j
"
Zou;(g; ) =1
i 1%
Ui(gil) = 0’ Ui(gi‘]) 2 o’ 0(8) 2 (V4 a € A, 1A i and j

§ a small positive value.

4) Testing the exidtence of multiple or near optimal sol-
utions (stability analysis). In case of non uniqueness,
find those optimal solutions which maximize the

% G4
" . " _ .
weights ui(gi ) = ui(gi ) for each i.
The modifications integrated into the new model are, by

step, the following :

1) The monotonicity constraints of criteria are taken into

account in the transformations of variables

- j+ly Iy . .
wij = ui(gi ) ui(gi )2 0¥ i and j. (10)
The utilities u [g(a)] are becoming functions of wij’
i.e. as
1 .
u,(g.” ) = 0, for j > 1 we have
iv°%i
i-1
1
u(gy) = I wy (11)
k=1

2) Introduction of a double error function: Write for each

pair of consecutive actions (a,b) of the weak-order
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Aa,b) = u [g(a)] - u [g(d)] + o*(a) - 67 (a) - o*(b)
+ 0 (b) (12)

3) Solving the primal of the linear programme

Minimize F = 3 {o¥(a) + o7 (a)}

aeh

under the constraints

A (a,b) z 8§ if a

A (a,b) = 0 4if a v b
L2y =1
i j

0%

20, ot(a) 20, 07(a) 20V aeA, ¥i and j

W, o,
1]

§ a small positive value.

0,-1
®
4) No change. The "weights".become : ui(gi ) = z Vike
k=1
Remark : This formulation is similar to those developed

in goal programming [1] . It is so easy to prove that, in
the optimum, we have 0+(a) . 0(a) =0V aeA, i.e. at least

one error per action is nil.
3. A NUMERICAL EXAMPLE

Let us consider the case of an individual whose choice
of transportation means home-work place during the peak hours
is analysed. Our decision-maker is interested only in three
criteria (1) price (in French Francs), (2) time of journey
(in minutes) and (3) comfort (possibility to have a seat) and

gives the following ranking with respect to five possible
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alternatives : RER » (METRO 1st ~ METRO 2nd) 3 BUS » TAXI
(see Table 1). As far as the criterion comfort is concerned,

a qualitative scale has been used

no chance of seating
little chance of seating

++ ¢ great chance of finding a seating place

++4+ : seat assured
Means of Price Time

transportation Rank (FF) (mn) Comfort
RER 1 3 10 +
METRO(1) 2 4 20 +
METRO(2) 2 2 20 0
BUS 3 6 40 0
TAXI 4 30 30 +4++

TABLE 1 : Ranking and multicriteria evaluations of

means of transportation

The first step of UTA* consists of making explicit the
utilities of the five alternatives. We have retained the

following scales

[gi*,gj] = [30,16,2]
[2,4,85] = [40,30,20,10)
[83*’8§] = ‘[0. +, ++, +++]

from which by linear interpolation for the gy criterion, we

find
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u [g(RER)j = 207 u (16) + .93 u (2) + uy(10) + ug(+)
u [g(METRO1)] = .14 u (16) + .86 u;(2) + uy(20) + ug(++)
u [g(METRO2)] = U (2) + uy(20) + ug(0) = uy(2) + u,y(20)
u [g(BUS)] = .29 u (16) + .71 u;(2) + u,(40) + uy(0)
= .29‘u1(>16) + .71 u (2)
u [8(TAXI)] = u (30) + u,(30) + uy(4++) = uy(30) + ug(h+s)

and according to (10)-(11) we have

u [g(RER)] = Wy o+ 293 Wyy F Woy F Woy + Wog o+ Mgy
u [g(METROl)] = w; + .86 Wig + Mo + Woo + Wgy + Mg,
u [g(METROZ)] = Wy Wig + Wy t Wy,

u [g(BUS)] = w7l g,

u [g(TAXI)] = Wy + wap + w32 + VWqg

Finally passing through step 2 of the comparison of
alternatives by pair, we arrive at the following linear
programme of the new version of UTA (8§ equals .05)

v : + - . Second
Wil Wi M) Wop Wa3 Wy Wgp w33| Variables ¢ and ¢ Sign amber

o .07 0 0 1 0 -1 0 l1 -1-110 000 00 2 .05
1 1 OIO

0 -.14 0 0 O 01-1-110000 = 0
o 29 1 1 0 0 0 oloooo1-1-1100 2 .05
1 71 -1 0 0 -1 -1 <1looo o000 1-1-11 2 .05
11111111!0000000000= 1
ooooooooi1111111111r
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An optimal solution is :

(w11 = .5, Wy = .05, Wog

which corresponds to the additive utility

u;(30) = 0 u,(40) = 0 uz(0) =0
up(16) = .5 u,(30) = .05 uy(+) =0
up(2) = .5 uy(20) = .05 ug(4+) = 0

U (10) = .1 uy(4+4) = L4

and to a perfect numerical restitution of the given weak

order.

This solution is not a unique one. Through step 4
(stability analysis) we are looking for multiple optimal
solutions or, more generally, for near optimal solutions
corresponding to error values between F* and F* + ¢. We
must therefore transform the error objective to a constraint

of the type:

I {o%(a) +07(a)l = F* + e (12)
ael

In the proposed example, as F*¥=0 and the linear programme

has multiple optimal solutions, we are}searching for the more
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characteristic ones which maximize respectively the quan-
tities (weights) Wip * Vg, Y21 + Wy + Wog, Wgyt Wgn o+ Wi
As the total sum of 0 and 0 1is zero, we have to solve the

following three linear programmes

Second
Y11 Y1z Y21 Va2 Va3 Y31 Y3y W3y Sign member
0 .07 0 0 1 0 -1 z .05
0 -.14 0 0 0 1 1 0 = 0
0 29 1 1 0 0 0 z .05
1 71 -1 0 0 -1 -1 - 2 .05
1 1 1 1 1 1 1 1 = 1
MAX 1 1 * 1lst objective
MAX 1 1 1 . * 2nd objective
MAX 1 1 1 <«

3rd objective

Starting from the optimal 'solution . of the preceeding

programme, we obtain three different solutions

lst solution : (w11 = .7625, Wig = .175, Vo3

= .0375, wy; = .025)
2nd solution : (w11 = ,05, Woy = .05, Wog = .9)
3rd solution : (w11 = ,35625, Wig = .175, Vo3

= ,0375, Vaq =.025, w =040625)

33

Let us take the centroid of these three solutions as a

unique utility function. Thus, we have

u;(30)=0 u,(40)=0 uy(0)= 0 u(RER)=.856
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u1(16)=.39 u2(30)=0 u3(+) = .017 u(Ml) =.523

4;(2)=.506  u,(20)=.017 u,(++)= .017 u(M2) =.523

uy(10)=.342 ug(+++)=.152 u(BUS)=.473

u(TAXI)=.152

The marginal utilities can be normalized by dividing every

utility ui(gij)by ui(g*i). Then the additive utility is

[u(g) = .506 up(ey) + 342 uy(g,) + 152 ug(gy)]

with ul(gl) and u2(g2) as given in figure 2 and

u3(0) = 0, u3(+) = u3(++) = ,112, u3(+++) = 1

71

v (ey) uy(ey)

16 30 10 20 30 40

price time

Fig., 2

Marginal utilities of price and time
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4, AN EXPERIMENTATION AND CONCLUSION

In order to evaluate the advantages of the UTA* version
over the old one, we have <considered a set of ten products
evaluated on six ordinal «criteria (table 2) using a unique
scale with four levels, noted : 4 ? 3 v 2 Y 1. On these
products we have randomly generated around twenty weak
orders to analyze by UTA and UTA*. The value of‘6 parameter

has been fixed equal to .05.

Products Qualitative criteria

— O 0~ W N =
S~ Wb NN =W
o s N W W
NN N W NN = N W N
== N NN =W N W
=N S =S NNN DS WS
o W W W N

TABLE 2 : Experimentation data

For this comparison we have used three indicators : (1)
the number of the necessary simplex iteractions for
arriving at the optimal wutility, (2) the Kendall's
between the initial weak order and the one produced by the
estimated utility and (3) the minimized criterion F (sum of
0) taken here as the indicator of dispersion of the
observations, The global results are illustrated in table

3. A net superiority is coming out favorizing the new
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method, concerning the indicators (1) and (3), which is
respectively of the order of 487 and 36%. An amelioration
of only 10%Z is coming out concerning the Kendall’s ¢. It
has been observed that in certain cases the original
version assured quite better results for Kendall’s . The
UTA formulation which consists of maximizing this criterion
is articulated wunder the form of a mixed variables linear

programme (see [4 s D. 162),

Indicator UTA* UTA Balance

Average number of

simplex iterations 11.1 21.5 fall 487
Average Kendall ™ s .69 .63 increase

107%
Average dispersion .34 .53 fall 367
index

TABLE 3 : Global results of simulation

We also tested the new version on two large scale
examples, stemming from real world studies which had been
conducted wusing the first version of the programme. The
first experiment (see [3], p. 198) had 57 alternatives
ranked in seven <classes and six qualitative criteria. The
first regression analysis involved 128 iterations, a. 81
Kendall's T and 2.38 dispersion indicator, while UTA* gives
129 iterations (+ 1%), Kendall' s 71.86 (+-5%) and dispersion
indicator 1.64 (- 31%). The second experiment ([4]) involves
50 alternatives and 12 criteria, only one of them being

quantitative. The dimprovements provided by the new version
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are summarized as following : number of iterations 135 versus
146 (- 8%), T.49 versus . 36 (+ 37%) and dispersion 1.11
versus 1.87 (-41%). In the two cases, the impact of the
application of UTA* is perceived by a met tightening of the
"c1loud" of adjusted points around the regression curve. The
improvement rate of dispersion index was in all experiments

between 307% and 407Z.

UTA* has been programmed using the Basic language and
works in an interactive way on the ZENITH 100 microcomputer,
while UTA exists on an 370/168 IBM system. The UTA approach,
especially with its new form, seems to be a very useful tool
for interactive modelling of preferences based on the coher-
ence between estimated utilities (human models) and exter-

nalized man decisions (see [4]).
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ABSTRACT

The use of a simplex method (either with Zeleny or
Philips technique) to find the efficient solutions of a
linear multi-objective problem rises increasing time and
memory storage difficulties as problems become of large

dimension.

In fact, for practical purposes, most authors share the
opinion that the process should be controled with the help
of other criteria, namely the decision maker s preferences,

either in a direct or indirect way.

In any case, every contribution +to increase speed and
efficiency of the multi-objective simplex is welcqme, In
this paper, the extension of the Dantzig-Wolfe decomposition
to a linear multi-objective problem is presented, along with
the theorems and proofs required by an efficient solution

search algorithm.
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1. INTRODUCTION

The search for the efficient solutions of a linear multi-
-objective program can be achieved in several ways: by an
abproximation of the set of the efficient solutions, by
iterative solving of single objective problems, or by use
of a multi-criteria (multi-objective) Simplex. In this last
option, mainly develloped by Zeleny (1), an algorithm
derived from the single objective Simplex allows one to
identify all the efficient solutions, by travelling along
the edges of the efficient solution set; however, as the

dimension of the constraint matrix increases, time solving

problems arise and become critical.

Several authors ((2)(3)) for instance have mentioned
that these computing problems could be kept at a reasonable
level by the wuse of aproximate methods, or with the
previous or interactive inclusion of the decision makers s
preferences in the solving priocess. Without questioning
these assertions, this paper presents a technique which is
intended to largely reduce computer timé and memory
requirements when solving a multi-objective Simplex, if a
special structure of the constraint matrix can be detected,
It-is based on the single-objective Dantzig-Wolfe decom-
position and on Zeleny multi-objective Simplex, whose

fundamentals are shortly described below,

2. DANTZIG-WOLFE DECOMPOSITION

The Dantzig-Wolfe decomposition (4) exploits the block-

-angular structure of the constraint matrix, as follows:
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max f = IclT . ctTl.x
subj. A1 At 0
B1 X,
Bt X bt
x 20

Pl: Original Problem

Assuming that the solution set Sk of each subproblem
Bk.xk=bk is closed and bounded, any element X of Sk may be

represented by a linear combination such as:

e o, Vi . .
X, = % w3 J , with % wa=1 (all k) and wa;O
j=1 j=1
(all j,k)

j ,
where X, are the Vi vertices of Sk'

Replacing x in problem Pl leads to the equivalent problem

Joe T Jop 3 4 3
P2, where U =C Xy and Py —Ak X
t Vk
max f =2 z wa ukJ
k=1 j=1
: 'k NI
subj. X oW TPy —b0
k=1 j=1
Vk i ,
zwd =1 » k=l..tand w0 k=l..t, j=l..v,
j=1

P2: Master Problem
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Taking m, as the number of rows of matrix Ak’ and m
as the number of rows of each matrix Bk’ problem Pl has
moo+Zom constraints, while the master problem P2 has only
m0+t constraints., However, the number of variables of
the master is extremely large, as it corresponds to the
number of extreme points in Sk for k=1.,.t. The Dantzig-Wolfe
method includes a column generating technique, <creating
columns as required, which overcomes that difficulty; the

process is condensed below.

In the master problem, the reduced cost of wa (corres-
ponding to the Jj extreme point of the k subproblen, ka)

is given by:

J e T T J
dk (ck t, .Ak).xk +ey

T

where tT=|to ty .ot

1

up stands for the vector of the basic variables in the
master problem (B_1 is the inverse of the basis matrix).,
Finding the most negative ko is equivalent to solving

t subproblems:

T T . j
max. (ck -t .Ak).xk

subj. B .xk=b

k k

J
xkz()

P3 - Subproblem k

and determining the minimum of the results,

The algorithm is similar to the usual Simplex method,

and the optimum is reached when the ko are all non-negative,
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The iterated éolving of the subproblems P3, with the same
constraints but different objective functions (to changes

every iteration) can be conducted by post-optimisation.

3, ZELENY MULTI-OBJECTIVE SIMPLEX

(1)

The algorithm proposed by Zeleny to determine
all the basic efficient solutions of a linear multi-
objective program is based on the following theorems, whose
proofs can be found in (1 or (2).

T1: If there is a non-basic column j with reduced costs
dj € 0 (all non-positive with at least one strictly
negative), then the present basic solution 1is

dominated.

T2: If the reduced costs of a non-basic column j are
d. = 0 (all non-negative with at least one strictly
positive) then including column j in the basis leads

to a dominated solution.

T3: Let j and q be two non-basic columns with reduced
costs dj and dq’ and with minimum replacement rates
rj and rq, respectively., If rj.djsrq.dq (all
elements less than or -equal, with at least one
strictly 1less), then the solution resulting from
introducing column q in the basis is dominated by the

one resulting from introducing column j in the basis.

» Making use of theorems Tl to T3 allows one to select the
variables to enter the basis, or to recognize, 1in some
cases, if the present solution is dominated. These criteria,
unfortunately, do not cover all cases and an auxiliar problem

is then formed:
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f
_ +
max Z = X dk
k=1

+

subj fk (x)-—dk = fk (xa) k=1..f
4,720 Jk=1,.f
x € X

P4: Auxiliar Problem

where x? is the present basic solution, fis the
number of objective functions and dk+ are the positive
deviations from the present value fk (xa) of the k objective

function.

If an objective function can be increased without
r:ducing the value of any of the others, then dk+ > O*and
Z > 0, and the present basic solution is dominated., If 2 =0,
the present solution is nondominated. We can therefore state

the following trheorem:

T4: Solve problem P4,
*
If Z- = 0, the present basic solution x° is efficient.

%
If Z > 0, then x2 is dominated.

4. DECOMPOSITION IN MULTI-OBJECTIVE SIMPLEX

Consider a 1linear program with a constraint structure
similar to problem Pl, but with several objective functions.
It will be shown that it is possible to form a master problem

like problem P2, but multiobjective, whose efficient
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solutions are also efficient solutions of the original
problem. The main diferences to the contents of section 2
1ie in the fact that in general the subproblems will also
be multi-objective, generating a set of nondominated reduced
cost vectors that will be required in the process of choosing
the variables of the master problem to enter the basis,
according to criteria similar to the multi-objective Zeleny

Simplex.

Assume that the set of nondominated solutions of each

subproblem k has already been defined:

k

Fach of these solutions produces an associated vector of

the reduced costs to the master problem:

(The notation convention of section 2. 1is kept here,
taking in account the dimensions increase; fke is the vector
of the objective functions wvalues of subproblem k associated

with solution xke).
The following problems stand:

T5: Consider a solution w of the master problem, and the
corresponding solution x of the original problem.
Then, these solutions are both dominated or both non-

—dominated in their respective problems.

Proof: The construction of the master problem implies that
the value of each of its objective functions is the
same of the values of the original problem, for the

corresponding same solution. The definition of domi-
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nated solution completes the proof, if one realizes
that every feasible solution of the master problem
has a corresponding feasible solution of the original

problem, and vice-versa,

T6: If every efficient solution of subproblem k has
dke by 0{ then every solution j of subproblem k will
have ko 2 0,

Proof: 1If any dominated solution of k had a reduced cost
J .
(dk )i < 0, then:

J _ J
(d 7); = (B ™) 4+t < 0

But, for each efficient solution x we have:

k
e e
(4 == (%), +e520
Therefore
- J iy
(fk )i + tik < (fk )i + ot

(£, 7, > (£,

Then ka cannot be dominated by any efficient solution
which means that ka is itself efficient, contradicting

the inicial assumption.
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From these two theorems, a rejection criterium similar
to T2 can be established, deriving directly from theorems
T5 and T6:

T7: If all the efficient solutions of subproblem k have
dke » 0, then the introduction in the master problem
of any column (kJ) of subproblem k leads to a domina-

ted solution in the original problem.

The recognition of the optimal solution of each objective
function allows ope to detect efficient solutions of the
multi-objective problem. Thus the importance of the next

theorem.

T78: If, for wevery efficient solution of every sub-

problem,

e
(dk )y > 0

1

then the ith objective function of the origi-

. . . . e
nal is at its unique maximum. If some (dk )i = 0,
this maximum is not unique.

Proof: Theorem T6 proof shows that there cannot be in any

subproblem k a dominated solution with (dke)i < 0.
Therefore, to all the solutions of all the subproblems
there is a corresponding positive reduced cost at the
ith objective function of the master problem. The op-
timality criterium of the Simplex method and TS5 com-

plete the proof.
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Solving the subproblems allows one to eliminate, as
candidates to entering the basis of the master problem, the
dominated columns of each subproblem. Theorem T7 is a
particular case of that feature, which is presented below

in a more general formulation.

T9: Introducing, in the basis of the master problem, a
column corresponding to a dominated solution of a
subproblem generates a dominated solution of the

original problem,

Proof: In each subproblem k we have, for every solution x9J

b o_ _
dk' fk+t

Kt
k

meaning that the reduced cost vector of the master
problem only differs of a constant (for subproblem
k) from the objective function vector of subproblem
k. Therefore, if a solution of subproblem k is
dominated for the reduced cost vector dk of the
master problem. Introducing in the master problem a
column corresponding to a dominated solution of a
subproblem would then 1lead to an increase of lesser
degree in at least one objective function of the
master problem (and of the original problem - T5) than
introducing another column corresponding to some other
solution dominating, in the subproblem, the solution
previously considered. The solution of the original

problem would thus be dominated,
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The other criteria adopted in Zeleny s algorithm, namely
T3, are of straightforward application to the select
columns of the subproblems. As for Té4, it requires solving
an auxiliar problem (P4) related ‘to the rows of reduced
costs of the original problem. For practical purposes, the
basis has a dimension just equal tb the number of objective
functions, leading to its direct solving in the original

problem.
A simplified algorithm for the application of the

decomposition in the multi-objective Simplex is presented

at the end of the text.

5. BIBLIOGRAPHY

(1) Zeleney, M. : Multiple Criteria Decision Making, Mc
Graw-Hill, New York, 1982,

(2) Goicoechea, A., Hansen, D.A. and Duckstein, L.:
Multiobjective Decision Analysis with Engineering and

Business Applications, John Wiley, New York, 1982,

(3) Cohon, J.L.: Multiobjective Programming and Planning,

Academic Press, 1978.

(4) Murtagh, B.A.: Advanced Linear Programming, Mc Graw-
Hill, New York, 198l.

REMARK

This paper condenses research work results sponsered by

the University of Oporto under contract 55/84,



66

First Basic
feasible sol.

The Dantzig Wolfe Decomposition extended to MCLP

Find nondominated
solutions x, of

subproblem k

|

Any row with (dk) 20
for all e?

| R

- | Store

row i

) < oany a%50 7 MY

N

Any column c with

r .dksr .dk

for all e ?

Store
col. ¢

L

Store all columns
with d not
comparagle to 0
N

next k

row i stored in
subproblems k?

&

@

present basic solution |
nondomlnated ?

Print

Solution

for all storeﬁ c?

Any stored columﬁﬁgﬂ\\\gz
with Ty .d sr .dk ///,

P

\
M

< N

other stored
column ?

e

Y

Introduce

l column in

basis

Unexplored
basis ?

Algorithm for the multi-objective decomposed -Simplex




INVESTIGAGAO OPERACIONAL 67

LABOUR STABILITY Vs BUSINESS PROFITABILITY WITHIN AN

AGRARIAN REFORM PROGRAMME IN ANDALUSIA (SPAIN): A COMPROMISE
PROGRAMMING APPLICATION

Francisco Amador,

Antonio Barco

Escuela Superior de Técnica Empresarial
Agricola (E.T.E.A), Cordoba, Spain.

Carlos Romero
Universidad de Cordoba, Departamento de Economia

y Sociologia Agrarias, Spain

ABSTRACT

In this paper a real problem related to the implementation
of the 1984 Agrarian Reform for Andalusia (Spain) is ana-
lysed. The problem lies in the degree of conflict between
one of the main objectives of the agrarian reform programme:
to provide stable employment, and perhaps the main objective
of the labourers associated into cooperatives established by
the Agrarian Reform: maximisation of business profitability.
A compromise between both conflicting objectives in this real
case is established by resorting to multiobjective and com~-

promise programming techniques.

Key words: agrarian reform, compromise programming, multi-

objective programming, rural employmenf.
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1. THE PROBLEM

One of the main objectives of the 1984 Agrarian Reform
Law (ARL) for Andalusia is that it becomes a powerful tool
which can mitigate the serious situation of unemployment
currently suffered by the rural sector in this autonomous
area of Spain. In fact, unemployment in this sector has
reached such alarming figures that it has gi?en way to a
conflictive social situwation with labourer s occupation of
large rural holdings ("latifundios") and a general peasant

unrest.

The ARL empowers the Andalusian JInstitute of Agrarian
Reform ("Instituto Andaluz de Reforma Agraria" IARA) to
implement, among other measures, the expropriation of rural
holdings under certain assumptions of low productivity
indexes. These indexes are measures of the level of
production, employment, etc. The expropriated holdings will
be redistributed among labourers associated into coopera-—

tives.

The TARA will recommend the farm plan to be set wup in
these cooperatives., In order to choose phe optimum cropping
pattern the TARA is obviously not interested in the farm
plan which maximises the business profitability of the
cooperative but in a farm plan that, securing minimum
business profitability, maximises the stable employment

level.

On the other hand, the main objective for the members of
these cooperatives is not the maximisation of the stable
employment level but the maximisation of an index of

business profitability as the gross margin of the cropping
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pattern.

Unfortunately, in the case of the crops cultivated in
the ‘irrigated lands of Andalusia, these two objectives are
in conflict. The objective of providing permanent employment
throughout the year can only be achieved for relatively low
levels of gross margin, On the contrary, high levels of gross
mafgin are only compatible with low levels of stable employ-
ment. In this situation a compromise between these two con-
flicting objectives must be obtained, establishing the opor-
tunity cost of the stable employment in terms of gross

margin.

2. THE STATEMENT OF THE CASE

Let  us assume the case of a labourers cooperative in an
irrigated arable farm of 100 ha in a certain area of
Andalusia under the agrarian reform programme. Table 1 shows
the linear programming (LP) matrix for the corresponding farm
planning problem. Most of the constraints of the matrix are
self-explanatory. However, some of them require further
clarification. Thus, constraints (14)-(17) measuring labour
seasonality must be explained. These <constraints represent
the deviations between labour utilisation for each crop in
the four periods of the three months considered and the
average labour utilisation for each crop. Thus, the first
coefficient of row (14) dis =59.44 because in the first
quarter cotton requires 4,14 hours/ha. while the average
labour utilisation for this crop is 63.63 hours/ha/quarter.
The deviational variables X14 ~X9, measure the under -and
over—- achievements with respect to a null deviation in every
quarter considered. As is well know, the minimisation 6f the
sum of the deviational variables will imply the minimisation.

of the mean absolute deviation (see e.g. Hazell 1971 although
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in' quite a different context). Therefore, the minimisation of
objective function 2 1 (bottom table 1) implies the minimi-

sation of labour seasonality.

Constraints (18)-(21) guarantee positive cash flows in
every quarter. The possibility of transferring the cash
surplus in one period to the next has been included in all
quarters except in the 1last' one where only 25% of the

possible surplus is allowed to be transferred.

The last constraints (22) and (23) secure a private
profitability and .a total level of employment to the farm
plan of 80.000 pts/ha of gross margin, and 150 hours/ha of

employment respectively.

Maximising the objective function 22 (see botton
of table 1) the farm plan providing the maximum gross
margin (i.e. maximum business profitability) is obtained.
This solution provides an optimum level of gross margin
174,116 pts/ha corresponding to a stationality of 253,28
hours7ha. These values and the respective cropping pattern

are shown in Table 2 row 6 (point F),.

Minimising the objective functions Zl (see bottom
of Table 1) the farm plan providing the minimum stationality
(i.e. maximum labour stability) is obtained. This solution
provides an optimum level of 'statiOnélity of 15.97 hours/ha
(practically a complete smoothing of labour utilisation)
corresponding to a gross margin of 82,320 pts/ha. These
values and the respective cropping pattern can be found in
Table 2 row 1 (point A).

These two solutions establish what in multiobjective
programming (MOP) literature is called the ideal or utopian

point; i.e. the point where all the objectives achieve the
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optimum value. Thus, in our problem the ideal or utopian
point consists in achieving a gross margin of 174,116

pts/ha with a labour stationality of 15.97 hours/ha,

The ideal point in our case is infeasible, as it always
happens when the objectives are in conflict, and cannot be
chosen, Therefore, it should be <chosen as the recommended
farm plan to the <cooperative the one corresponding to
either point F (i.e. a high gross margin with a high
seasonality) and point A (i.e. 1low labour seasonality and

low gross margin) or a compromise between these two points.

3. GENERATION OF THE TRADE-OFF CURVE BETWEEN GROSS MAR-
GIN AND LABOUR STABILITY

Points A and F can be considered as the bounds of a
certain transformation curve which measures the relationship
between gross margin and labour seasonality. To set wup that
curve could be very useful in order to obtain the trade-offs
between the two objectives considered. Establishing the curve

is equivalent to generating the set of efficient (non-

~dominated or Pareto optimal) solutions. The elements of

this efficient set are feasible solutions such that there are
no other feasible solutions that can achieve the same or
better performance for all the objectives and strictly
better for at 1least one objective (e.g. Romero & Rehman
1984, pp 180-81).

The MOP literature offers several approaches to generate
or at least to approximate the efficient set: weighthing
method, constraint method, multicriterion Simplex, etc. A
detailed explanation of these methods can be seen in: Cohon
(1978 chap 6), and Goicochea et al. (1982 chap 3).




72 Labour Stability vs Profitability in Agrarian Reform

Among these possible approaches we have chosen the
non-inferior set estimation (NISE) method to solve our
problem. The NISE method, which was developped by Cohon et
al. (1979), permits the exact generation of the efficient
set when the number of objectives is two, using a common

linear programming code in an iterative way.

- Applying the NISE method to the bicreteria 1linear
programming problem presented din Table 1, the trade-off
curve or efficient set between gross margin an labour
seasonality of figure 1 is obtained. The coordinates of
these extreme points and the values of the decision

variables (cropping patterns) are shown in Table 2.

The actual values of the trade-offs between gross margin
and labour seasonality can be viewed as the slopes of the
straight 1lines connecting the extreme efficient points in
Fig. 1. Thus, the slope of the segment AB indicates that in
this part of the trade-off <curve for each hour/ha of
increase 1in labour seasonality gross margin increases in

1590 pts/ha.

The optimum farm plan should be chosen by the IARA from
the trade-off curve or set of efficient solutions. But,
which efficient farm plan will be chosen by the IARA? The
answer will depend on the preferences that the TIARA
attaches to each objective; i.e, it will depend on the
subjective values of trade-offs between gross margin and
labour seasonality. For dinstance, if the IARA chooses the
farm plan given by point B instead of the one given by
point A it will mean that for the IARA a reduction of 21.49
hours/ha . of 1labour seasonality does not compensate a

decrease of 34,110 pts/ha of gross margin.
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4. THE COMPROMISE SET BETWEEN BUSINESS PROFITABILITY
AND LABOUR STABILITY

Once the trade-ff curve or efficient set has been
defined the following step in our analysis is to established
the optimum efficient point or at least to reduce the size of
the efficient set. These purposes can be achieved resorting
to a compromise programming (CP) approach. This approach,
proposed by Zeleny (1973, 1974 and 1976) helps to choose the
optimum element from a set of efficient solutions. Its basic
idea is to define the optimum solutign as the efficient
solution that is closest to the ‘ideal point (axiom of
choice, Zeleny 1976 p 171). Depending on the particylar
measure of distance used, . a compromise set (subset of the

efficient set) can be established.

In our <case we need to calculate distances from every
point of the trade~off curve to the ideal point. With this
purpose in mind the degree of closeness dj between jth

objective and its ideal is given by:

when jth objective is maximised, or as

L= 7. - Z*
d’J j (x) i

when the jth objective .is minimised, Z*j being the

ideal value. When the units used to measure various objec-
tives are different (besetas and hour in the case consi-
dered); relaﬁive deviations rather than absolute ones must
be used (Zeleny 1973, p 299). Thus the degree of closeness is

given by:




74 Labour Stability vs Profitability in Agrarian Reform

J ]
d, =
’ AL Z
i Ty
or
Z - Z*
j (2 j
d, =
’ Z Z
G
where Z, . 1is the anti-ideal for jth objective; i.e. the

value of jth objective when the conflicting objective is
optimised (for our case 229.90 hours/ha for labour seasonali-

ty and 82,320 pts/ha for gross margin).

In order to obtain the distances between each solution
and the ideal point CP introduces the following family of

distance functions:

1/p

where 3j weights the importance of the discrepance between

the jth objective and its ideal value.

For the metric Ll’ i.e. for P=1, the best-compromise
solution is found by solving the following linear programming
(LP) problem (see e.g. Cohon 1978 p. 1985):

9, [zy (») - 15.97] 9, [174.116 - 2z, (x)]

Min L1 = +
229.90 - 15.97 ‘ 174,116 - 82.320
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which is tantamoumt to:

Min L; = —— Z;(%) = ————— Z,(X%) (1)
213.93 91.796

s.t. ~x € F (technical constraints from Table 1).

The optimum solution of problem (1) for 31 = 32; i.e.
assuming that the two objectives are equally important, is
given by point C. Therefore, point C is the best-compromise
solution and this means that C is the efficient point closest

to the ideal point when the metric L1 is used.

For the metric L_, i.e. for P = o, the maximum of the
individual deviations is minimised. That is when P = o only
the largest deviation counts., For this metric, the best-

compromise solutidn is found by solving the following LP
problem (see e.g. Cohon 1978, pp. 185-187):

[+

Min L, = d

9, [2,(x) - 15.97]

V2]
°
[n3
°
A
[=%

229.90 - 15.97

(2)

9, [174.116 - 22(5)]

A
(=%

174,116 - 82.320
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x € F (technical constraints from Table 1)

where d, is the largest deviation. The optimum solution of
problem (2) assuming again 81 = 32, is given by point S.
Figure 1 and the last row of Table 2 shows the values of Zl’

Z2 and the farm plan corresponding to point §.

Yu (1973) has demonstrated that metrics Ll and L

define a subset of the efficient . set, which Zeleny (1974,

p. 488) <calls the compromise set. The other best solution

(for 1 s P £ ») fall between the solutions corresponding to

metrics Ll and L,

Segment CS represents the compromise set. The optimum
solutien will be chosen by the IARA from the points belonging
to that segment. Obviously, if the weights 81 and 32 attached
to the discrepancies between each objective and its ideal
value are different with respect to the values considered in
this case (31 = 82), the structure  of the <compromise set
can be modified., Performing a sensitivity analysis with the
9, weights <can furnish the decision maker with worth-
wﬂile data related to the range where the compromise set can

be defined.

The last column of Table 2 shows the level of employment
corresponding to the six efficient extreme points and to
point S. These figures have been included for two reasons.
First, to evaluate the opportunity cost of the different
policies in terms of gross margins. Second, to provide
additional information in order to choose one point
belonging to the compromise set. Thus, in our case point S
perhaps should be chosen because its level of employment is

60.8 hours/ha. higher than the employment of point C,
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TABLE 2, Feasible Efficient extreme Points and Cropping Patterns

Objective Functions

DECISION VARIABLES

NHAHmvo:H NNAOHomm margin) X Xy Xq X, Xg wm Mu Mm % |*qg X171 F12 1*13
Extreme {seasonality) o @ ] » @ ° EMPLOYMENT|
points o S & bl o 5% |8« £ S e
o] - Ry o
hours/ha thousand pts/ha ot 3 £ .m, m mo M,w m‘m, m m mo m m m m hours/ha
3| = S| & & |a oy |€a £+ |3 S+ &5
-ha- | -ha- (-ha- [-ha- |ha- (ha- |ha- rha- |-ha- | -ha- —ha- |-ha- |-ha-
A 15.97 83.320 16.43| 25 |12.45} 25 | 2.10|4.05 |- - - 8.56 16.41 | - - 156.18
B 37.46 116.430 27.724 11.57 | - 25 15 ]11.92 |- - - 13.66 |4.64 | - 0.49 204.63
Ly —C 66.95 130.709 30 - |11.49 - 15 | 8.37 |25 - - 9.7210.42| - - 210.78
D 121.23 151.088 30 3.63(13.66( 10 - 20 - 15 - 1.08] - - 6.63 335.23
E 216.71 173.424 30 - (12.08] 8.91 - 119.01§ - 15 - - - - 15 440.13
F 225.90 174,116 30 - 8.81 - - | 12.83] 10 |15 - 8.36| - - 15 421.73
L -8 93.50 140.08 30 - |15.80| 6.56| 11,11 14.78]14.553.89 - - - - 3.31 271.58
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i~ Ideal solution (15.97; 174.116) E

slope (trade-off)=0.05

# e 5loOpe (trade-of£f)=0,23

et Slope (trade-off)=0.38

g Min L (93.50, 140.08)

COMPROMISE
SET

Cd'e— Min L, (66.95, 130.71)

@ slope (trade-off)=0.48

. SLlOpe (trade-off)=1.59
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Labour seasonality (hours/ha)
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ABSTRACT
In the field of investment planning within a time
horizon, problems typically involve multiple decision

objectives, and basic data are uncertain. In a 1large number
of cases, these decision problems can be written as linear
programming systems in which time dependent uncertainties
affect the coefficients of objectives and the RHS of the
constraints. Given the possibility of defining plausible
scenarios on basic data, discrete sets of such coefficients
are given, each with its subjective probability of occur-
 rence. The corresponding structure is then characteristic for

Multi-Objective Stochastic Linear programming (MOSLP).

In the paper, an interactive procedure is described to
obtain a best compromise for such a MOSLP problem. This
algorithm, called STRANGE, extends the STEM method to take
the random aspects into account. It involves in particular,
the concepts of stochastic programming with recourse. In
its interactive steps, the efficiency projection techniques
are used to provide the decision-maker with detailed

graphical information on efficient solution families.
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As an illustration of the successive steps, a didatic

example is solved in some detail.

1. INTRODUCTION

Many practical problems such as investment planning on
a long time horizon, can be formulated as multi-objective
linear programming problems, having some coefficients
affected by uncertainty. An example has been described in

detail in [7],

It concerns small rural communities, without industrial
activities, far removed from the grid in a Third World
Country with dimportant solar resources. Roughly speaking,
the problem consists of comparing the merits of electrosolar
generators with those of traditional Diesel systems and of
defining a strategy for the planning of the electrical power
system over a time horizon of twenty years. The linear model-
lization represents the dynamic implementation of these two
types of equipment, which being subjected to certain techno-
logical constraints, must be adequate to satisfy both the

energy and power demand of the community.

Three objectives are considered: the’ total production
cost, the outside expenses and the safety of energy supply.
Tt is obvious .that some coefficients <in this problem are

uncertain:
- First of all, from one scenario to another, there are
variations in both the Diesel fuel price and in the cost of

solar technology.

~- Similarly, different assumptions are made with regards
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to the fuel supply conditions and the statistics concerning

the number of days of insolation available.

For each scenario, probabilities of occurrence are
defined by the experts. It must be made clear that these
probabilities are subjective. They generally at least
account - for mean and extreme situations, and it 1is usually
difficult to define the occurrence of a given scenario

precisely.

Hence, at the end of the study, it is necessary to carry
out a sensitivity analysis simulating events with a range

of subjective probabilities.

Another application of this type will be described in a

forthcoming paper [6].

Such problems result in a particular structure of multi-
objective and stochastic linear programming (MOSLP), in
which discrete random coefficients are present in the
objective functions and in the RHS of some constraints; yet,
the coefficients of the LHS of the constraints are related
to the technology of the problem and are generally determi-

nistic.

So, we obtain (see [11]), a MOSLP'problem formulated as

follows:
"min" zk = ck . X k= 1,...,K
(D)
X'€ D(X) = {X|] T Xsd, Xz 0}
where ck and d are "discrete random variables"; more

precisely:



86 An Interactive Method for MOLP under Uncertainty

- The k~th 1lincar objective function depends on Sk
different scenarios, each of them being affected by a
sggjective probability or level of plausibility; let

c k (sk = 1,...,Sk) be the possible values of ck and

P(k), the subjective probability of scenario Sy with
S
vk Pgt) = 1.
5 =1
- Some elements of vector d are uncertain; let dF (r =

=1,...,R) be the possible outcomes of vector d and 9,

the corresponding subjective probability, with

R
z q_ =1,
r=1 r
In the literature, very few papers exist concerning

MOSLP. Recently, Stancu-Minasian [10] has presented a
survey of this subject. The most commonly used approach
seems to. be the "Protrade method" of Goicoecha [4]. This

method concerns the problem:

"min" 2X(w) = ck(w) . X k = 1,...K

X € D(X) = {X]| g(X)

A
o
<
v
o
—

where vector g(X) is composed of differentiable and convex

functions.

The great advantages of this method are its being
interactive and its treatment of a very general problem,
with non-linear constraints and general distribution for the
random coefficients of the linear objectives. However, in our

opinion, it presents several disadvantages; especially:

- a utility function is introduced, the practical
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construction of which is often a difficult problem;
moreover, the use of such a function is based on certain
assumptions which are often unsatisfied in practice and

thus limit its area of application;

- at each step, the information is reduced to the mean
value of the objectives, hence not taking the dispersion
enough into account. This can be insufficient for the

decision maker to correctly appreciate a compromise.

Other technical characteristics of this make it difficul-
tly to apply to problems such as those described in [6] and
[7]. Hence, in this paper, we present STRANGE, a new interac-
tive method for the treatment of the problem (1).

In section 2, we shall transform the problem into an
equivalent deterministic multi—objectiﬁe LP problem and
describe how to obtain a first compromise; Section 3 is
devoted to the interactive phases and special attentidn
will be given to the <collection of precise information
which can help the decision-maker to take a more calculated

choice. Some conclusions are presented in Section 4.

Each of these sections will be illustrated by a didactic

example defined in Section 2.
Remark:

Another 'way of treating multiple criteria LP problems
with uncertain coefficients is to introduce fuzzy numbers
to characterize the uncértainty. This approach results in
the formulation of a multi-oibjective fuzzy linear program-
ming (MOFLP) system. Several papers have been published on

this subject; for instance, Carlsson [2] uses fuzzy program-
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ming to solve ill-structured problems, and recently,
Slovinsky |9| has carried out a survey of different methods
fo fuzzy linear ‘programming. Further, in this paper, this
author presents a case study involving the development plan-
ning for a water supply system, for which he proposes a new

MOFLP algorithm.

2. THE FIRST COMPROMISE PHASE

Example: Let us consider the following didactic example,
in a two-dimensional space, with a similar structure to that

of problem (1).

First objective z1

b e 15wty xy)
Three scenarios affect this objective (S1 = 3):
s; =1: c”=(2,—4) with probability p§1)= —i—
Sy = 2 C12=(“§—, :E—j with probability p§1)= —%—
Sg =3 : C13=(33—3) . with probability p§1)= —%_

Second objective 22

2 109 2 !
z" = 16+ ¢ ’(xl’XZ)
Two scenarios affect this objective_(S2 = 2):
21 3 . cq s 2
8, = 1 : ¢ = (-1, —Z—) with probability pf )= —%—
22 3y 1 2 ,
s, = 2 2 c = (= _Z_’l) with probability pé ). —%—
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Constraints:

The constraints are defined by

-7 12
- The matrix T = 1 -1
1 3

-~ The discrete random variable d, with four possible

outcomes

r = 1 dl = (39,5,18) ~ with probability 1 = —T%—
2 - . . C 3

r = 2 d® = (39,5,15) with probability 1 = "o~
3 - . ca 2

r = 3 d” = (39,5,12) with probability T
4 - . s 1

r = 4 d = (39,5,9) with probability 1, = 1o

Only the RHS of the third constraint is uncertain. The
set D(X) is thus given as in Fig. 1, where the interrupted
lines represent the four possible outcomes due to the

randomized constraint.

2.1. An equivalent deterministic multi-objective LP

problem

First, each situation (k, sk) is defined as a criterion,
to take into account the different scenarios affecting the

K objectives, i.e.

ks kSk

o = ° 8 © S
z k(X) = C Lyeees K5 sy 1, "7k

X k
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These criteria will be seen as "new objectives",

Then the difficulty related to the vrandom RHS d is
treated. Using the idea of '"stochastic programming with
recourse" [5], slack variables are introduced measuring the
violation of the constraints, corresponding to the realiza-

tion dY of d:
TX + VE - Wl = 4aF r=1,...,R
resulting in
D,(z) = {z = (X,v',W", r=1,...,R)|T X + V" - w" = 4d", z 2

Then, as in [8], a supplementary criterion is created to

penalize the violation of the constraints:

R
min 21 qr(br.wr) o (2)
Ir=

r . .
where b~ is a vector of linear penalties.

This criterion is not affected by the different scenarios

and to unify the notations, it has been defined as:

K+1,s :
K+1 .

z (Z) with SK+1 =1

So that, the following deterministic multi-objective LP

problem is obtained:

k.sk
"min" =z (2)

k=1,c00, K+1 ; s, = 1,...,Sk (3)
Z € Dl(Z)




INVESTIGAGCAO OPERACIONAL 91

K+1

with D) Sk criteria.
k=1

Example:

The structure (3) corresponds to the following multi-

-objective LP problem, with the following constraints:

-7 Xy o+ 12 X, £ 39
Xy - X, £ 5

< X, + 3 Xy + v1 = 18 X]sXy 2 0 ; vi 2 0,wi 2 0
x, + 3 x, +vi - v e 1s
xX; + 3 X, 4 v3 - w3 = 12
\ X+ 3 Xy + v4 - w4 = 0

and the six following criteria to minimize:

z11 = 15 + 2 Xy - 4 X,
12 5 7
z = 15 + 2 X1 T Ty X%y
213 215 4+ 3 x, - 3 x,
21 _ _109 3
Z = 16 - Xl + 4 XZ

z22 109 3
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3 w2 + 2 3 1 4

=1+ 15 10 10

Remarks

(i) w1 is set to zero as it is necessary to at least
verify x; + 3x, £ 18,
1 2
(ii) The linear penalties are taken as being equal to one.

(iii) A constant is dintroduced in 231 to always have

strictly positive values for the criteria,

2.2. The pay-off table

K+1 ksk
For each of the I ‘Sk criteria z (Z), an optimal
k=1
~ksk
solution 2 of the corresponding single criterion LP

problem is determined; this provides an ideal point in the

criterion space:

ksk ksk ~ks

M = 2 (Z k

) : (4)
“ltl
- If Z is a unique solution of the problem (l,tl),
the value is introduced:

E(11:1)(ksk) ksk ~1t:1

= gz (Z ) (5)

-~ Otherwise, as <clearly explained 1in [3], the optimal
solution of one of the single <criterion problem being not
unique, the values defined by (5) are underdetermined. Note
that this often happens in practice, since some variables
are irrelevant with respect to a particular objective (see,
for instance, the objective describing the vraw material
supply in [6]). Moreover, it is always the case for the

criterion K+1 defined by (2).
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Then, the problem (1’t1) is degenerated, the updated
technique proposed by Despontin [3] is applied to avoid
ambiguity din the resulting pay-off table. The single cri-

terion problem is solved:

ks
min z k(Z)
Z e D, (Z) (6)
1t 1t
2 Lzy - u 1
_(1t1)(ksk)
and z is defined as the optimal value of (6).
(1)) (ks))

The pay~off table is formed of all the values z
given by (5) and (6), with the co-ordinates of the ideal

point on the diagonal of the table.

Example:

Each of the <criteria zll, zlz, z13, z21, 222 has a

unique optimal solution, respectively:

o3, sy
2o o, A3y
13- o, L3y
Rl (3 3,
2 -( s , o)

so that the corresponding columns of the pay-off 'table are

immediately obtained by (5).
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Clearly, it is not the <case for criteria 231: we have

M31 = 1 and the corresponding column of the pay-off table

is determined with (6).

The pay-off table is then as follows:

11 12 13 21 22 31

X X X X X X77(%)

211 1 2 2 —-3—;— 25 3
12 5 29 29 97 55 9

z 8 8 4 2 2
13 21 21

z 9 == = 30 30 6
21 121 37 37 1 29 25

z 16 4 4 16 16
22 153 161 161 31 49 49

z 16 16 16 8 16 16
31 41 43

pA 4 0 %0 4 1 1

(*) This column correspond to different optimal solutions

1 . . . .
X3 ; these solutions are in fact, for each «criterion the

optimal solution submitted to the constraints

-7 x, + 12 x, 5 39
1 2 . < 0
xp - X E x) 2 0, %, 2
x, +3 x,5 9
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2.3. The first compromise

To determine the first compromise, a minimax optimization
is applied like in the STEM method [1]; however, in our case,
as all criteria (k,sk), ‘Sk = 1;...,Sk, correspond to
different scenarios of a same objective, we have to minimize
the maximum mean distance between the ideal point and this

first compromise, i.e.

min O
—Sk ks ks ks
Pl e K lz oM My Kss kel kel (7)
Sk=1
Z € D,(2)

where the weights are determined in a similar way as in [1]

ks
ksk o« k
’"’ =
K+1 S
5 Zk ccksk
k=1 ‘Sk=1
where
ks ks ks
[+ k = m k e M k ].
ks ks
k k
m e “I
with
ks (1t,)(ks,)
m k max 2 1 k (8)

(e
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However, in case e optimal solution (7) is not wuigus,
the maximax soluiinsn obtained may not be efficient: to
ensure the efficiency of the first compromise, the Demsponiin

modification [3] might be used, giving the problem PI:

K+1
min M . 8§ - b) €K
k=1
Sk o ke ks, ks
P1 s |2 Psk (¢ . Z - M Y .o s 6 - € k=1,..,%+1
sk=1
Z € Dl(Z) {9)
ek 2 0 k=1,..,K+1

where M stands for a very large number, like in the method

of artificial variables of linear programming.

Let us call 21, the first compromise given by the

optimal solution of Pl'

Example:

The following weights are obtained (taking into account

terms in the objective functions):

1l Z0.055 5 w!% —o0.052 ; w3 - o0.050 ;
n2l _o0.184 5 w%%0.143
731 - 0.516

so that the first compromise Z1 given by (9) is :
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Xy = 4,54 X, = 3.40
v2 = 0,27
wl = 0 cwS = 2,73 5wt = 5.73

This result is shown in Fig. 2.

THE INTERACTIVE PHASE

ot

For each compromise Zm, the decision-maker receives

three pieces of information:

(1) The value of objective k in the situation of

scenario sk

which is given, regarding the interval of variability

of this criterion:

ks k
M n K]

This first set of information has the advantage of not
reducing the complexity of the problem, hence leaving
the decision-maker with a complete view on the con-

sequences of a compromise,

(2) However, it can be wuseful to also provide the mean

value of each objective k

—k_—k'”
- 2% )
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with
S
k ks
Zkz) = ¢ ng) z X(2)
sk=1 k

(3) The decision-maker is also very interested by the
variation of each objective. To give him a simple idea
of it, the confidence level of the compromise is de-

termined, i.e.

1 -« op (kL7 s oz p(0)
m . m m Sl(} Sk‘
.
_ks 5
z K g gk
m

If the decision-maker is satisfied with the compromise,

the procedure stops. Otherwise, one asks him to indicate:

- a criterion (ksk)* to be relaxed;

(ks )™ (ks )*
~ and upper limit A of the increase of z .

Remark:

The first indication is essential as it gives a direction
in which the compromise will be improved; in practice, if the
decision-maker is generally - able to indicate the most
favourable candidate for such relaxation,

| (ks )*
he has often some difficulty to expresss A .
‘Without any restriction, one can simple take:
* ) *
A(ksk) . ) E(ksk)
\ = Mks)* T Zm

STRANGE will explore the consequences of such a relaxation
for the decision-maker be integrating the notion of "effi-

ciency projection", developed by Winkels [12,13]. The fol-
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lowing one parametric LP problem P is considered

m+1

-
K+1
min M. § - I fk
k=1
Sk (k) ksk ksk ksk
z Psk (c «Z -M T)m 8 - € k=1,...,K+1
(ksk)* _(ks )% (ks, )
melt c o Z = 2z + A A 0 s-A 51
Z € Dpy1(2) (10)
€\ 2 0 k=l,...,K+1
where Dm+1 is defined by:
. ﬁZ(Z) = Dl(Z) for initialization
(ks )* (ks )* _
s
. m+2(Z) m+1(Z) Nn{z| = (2) 5 =z (zm+1)}(11)
for m 2 1, after compromise Zm+1 has been determinéd.
Using a dual simplex technique, we determine the
sequence of bounds Ai (i = 1,...,V), with 0 = Al <
S ... S Av = 1, corresponding to the stable intervals for
the optimal bases of the problem.
Let us call‘Zm+1(A), the optimal solution of m+1 Egr
each criterion (1t1), ‘we determine the function =z
(Zm+l(A)), which is a piecewise linear function, as shown in

the Fig. 3.

So the decision-maker is provided, with a complete

graphical analysis of the relaxation of criterion (ksk)*.
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Remark:

(i) It might be more comvenient for the decision-maker
to examine the variation of all the criteria (1t1),
w.r.t. parameter X. In this case, it is better to consider

the relative values:

215z () - oMbt

Tt ylt

which are all included in the interval [0,1].

(ii) Such graphics can also be easily determined for the
mean values Ek(Zm+1(A)) and for the confidence level 1

k
- ocm()\).

After analysis of these graphics, the decision-maker must
then indicate an acceptable 1level X of relaxation, so that

the new compromise Zm 1 is obtained

+

2ol = Zpgr )

In one sense, A corresponds to the maximum level of relaxa-
tion accepted with respect to the value

(ks )*
z, . In the possible next interactive phases, this
level is at least imposed for the new compromises, so that

improvements are still possible.
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s, - % I
At each new interactive phase , the decision-maker must
choose a different criterion (lcsk)>:< than in the preceding

phases, the procedure thus comes to an end, after a maximum

K+1
of I s, interactive phases.
SK=1
Remark:
In some applications, it <can be convenient for the

decision-maker to impose relaxation with regards to the
mean value of a particular objective k*; in that case,

relation (10) is replaced by:

-k * ek P
zK (Z) = zK + A AlH

% —k*
where Ak is an upper limit of the increase of zk .

This is the case whenever correlations between scenarios
are such that relaxing the individual criterion ks&
makes all other criteria ks’k move at the same time.,
For instance; in economic objectives, unit costs pertaining
to different scenarios have a limited range of variation,
and the corresponding cost functions are not completely

independent,

+When a critgrion (ksk)* is chosen to be relaxed, its
s

weight T ' is set to zero for the following steps of

the study.
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Example:

An Interactive Method for MOLP under Uncertainty

First interactive phase:

. The three pieces of information resulting from the
first compromise are presented to the D.M. as follows:
ks ks ks
ksk Z k [M k, m, k
11 10.49 [1,25]
12 14.46 [3.625,27.5]
13 18.43 [5.25,30]
21 4,82 [1,9.25]
22 6.80 [3.0625,10.0625]
31 2.12 (1, 4]
=k ok
k z] 1 - 1
1 14.46 0.75
2 6.31 0.25
« The D.M. indicates:
(ks )* (ks )*
* = = = -z
(ksk) (1,1) A 14,51 m(ksk)* z
. The parametric LP problem P2 (equation (10)) is
solved, and a graphic representation of the relative
variations of all the «c¢riteria is given in Fig. 4; the

absolute values are given

in the following table:
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11 12 13 21 22 31
z z Z z b2 z
AO = 0,000 10.491 14,460 18.428 4,821 6.805 2,112
Al = 0.107 12.040 16.026 20.013 4,354 6.347 1.982
Ay = 0,168 12,931 16.325 19.718 4,588 6.285 1.300
AS = 0.249 14.107 16.718 19,329 4,897 6.203 1,000
A4 = 0,463 17.203 17.754 18.305 S5.711 5,986 1.000
AS = 1,000 25,000 27.500 30.000 1.813 3.063 1.000
The D.M. chooses the level of relaxation Al correspon-

ding to the following

set of data.

The corresponding non-vanishing variables are (see Fig.

2):

Xl=

4.82

3.15
2.27

<
200
1

)
]

0.73
5.27
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Second interactive phase:

. From the ©previous step, the D.M. now indicates the

next candidate for relaxation:
(ksk)* = (231)

. The parametric LP problem P3 is solved as shown:
in Fig. 5, where a relative scale for all the <criteria has

been chosen; the absolute values are given in the following

table:
L1 ,12 L3 Z21 Z22 ;31

Aé = 0.000 12.040 16.026 20.013 4,354 6.347 1.982
Xi = 0.164 10.263 13.905 17.547 5.159 6.980 1.816
Aé = 0,209 10.833 14,016 17.199 5.375 6.967 1.300
Aé = 0.286 11.828 14,211 16.594 5.752 6.943 1.000
AL = 0,302 12.039 14,252 16.465 5.832 6.938 1.000
Aé = 0.616 12.039 12,409 12,779 7.368 7.553 1.000
Aé = 0,962 3.000 4,500 6.000 9.063 9.813 1.000
A% = 1.000 2.000 3.625 5.250 9.250 10.063 1.075
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o D.M. choses the level of relaxation A'l

corresponding to the following data:

ks, ngk Kk zg 1 -«
11 10.26 1 13.90 0.75

12 13.90 2 6.53 0.25

13 17.55  mmmmembe L
21 5.16

22 6.98

31 1.82

The corresponding non-vanishing variables are (see Fig.,

2):

x, = 4.07 x, = 3.22
v: = 1,28
Wl o= 1.72 w2 4,72

A third relaxation phase is carried out on the third
objective. As can be seen in Fig. 6, this relaxation does
not bring any significant improvement of the other criteria.
The DM decides to keep the solution obtained during the

second relaxation step.
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CONCLUSIONS

The MOSLP approach used in the strategy code STRANGE has
been described in detail and illustrated with a simple
numerical example. As a decision aid, it has already been
used in real world prdblems [6,7,11] and might therefore
claim to be useful and simple to wunderstand from the point

of view of a D.M.

Its basic approach is STEM, although it 1largely differs

from it mainly in the following respects:
- it provides efficient solutions;g

- rather than giving isolated results difficult to
interpret, it provides the D.M. with families of ef-
ficient solutions and visualized functional dependence
between criteria. This leaves more space for successive

guesses and trials from the D.M.;
- it includes stochastic aspects.

Regarding the 1last point, the definition of scenarios
in the resolution algorithm seems to be the easiest and
most understandable way of describing future uncertainties.
Other approaches have their merits, but are nevertheless
not very easy to use in 1large scale problems such as those

encountered in energy planning.

Moreover, it looks as if the STRANGE approach also has
potential for mixed variable problems on which our current

effort is centred.
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A NOTE ON THE PAY-OFF MATRIX

IN MULTIPLE OBJECTIVE PROGRAMMING

MATTHIJS KOK - DELFT UNIVERSITY OF TECHNOLOGY

JAAP SPRONK - ERASMUS UNIVERSITY ROTTERDAM

ABSTRACT

The pay-off matrix dis a well-known device in multiple
objective programming. It helps to understand the conflicts
between different goal variables. Furthermore, the pay-off
matrix constitutes the basis for the calculation of fre-
quently used references vectors such as the ideal (utopia)
vector and the nadir vector. Unfortunately, when the separate
optimization of the individual goal variables does not result
in unique optimal solutions, the corresponding nadir vector
is not uniquely defined.Ignoring this phenomenon may have a
serious effect on several multiple objéctive programming
methods. In this paper we re(de)fine the notion of nadir vec-
tor in order to take account of the possibility of alterna-
tive optimal solutions. We also present a procedure which

generates this uniquely defined nadir vector.
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UTASTAR : AN ORDINAL REGRESSION METHOD FOR BUILDING
ADDITIVE VALUE FUNCTIONS

J. Siskos, Technical University of Crete

D. Yannacopoulos, Lamsade, Universite de Paris

ABSTRACT

This paper presents an improved version of the UTA
method performing an ordinal regression analysis by means
of more powerful linear programming formulations. The

ordinal variable to be analysed is a weak-order relation

whereas the independent variables are criteria, i.e.
quantitative and/or qualitative monotone variables. The
method dis illustrated by a simple numerical example.
Finally, experimental results are given, demonstrating by

means of three distinct indicators, the superiority of the

adjustements obtained with the new method.
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THE DANTZIG WOLFE DECOMPOSITION EXTENDED TO MULTI-CRITERIA

LINEAR PROGRAMMING - THEOREMS, PROOFS AND ALGORITHM

Manuel A.C.C. Matos Viadimiro Miranda

Faculty of Engineering

University of Oporto - PORTUGAL

ABSTRACT

The use of a simplex method (either with Zeleny or
Philips technique) to find the efficient solutions of a
linear multi-objective problem rises increasing time and
memory storage difficulties as problems become off large

dimension.

In fact, for practical purposes, most authors share the
opinion that the process should be <controled with the help
of other criteria, namely the decision maker’s preferences,

either in a direct or indirect way.

In any case, every contribution to increase speed and
efficiency of the multi-objective simplex is welcome. In
this paper, the extension of the Dantzig-Wolfe decomposition
to a linear multi-objective problem is presented, along with
the theorems and proofs required by an efficient solution

search algorithm,
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LABOUR STABILITY Vs BUSINESS PROFITABILITY WITHIN AN
AGRARIAN REFORM PROGRAMME IN ANDALUSIA (SPAIN): A COMPROMISE
PROGRAMMING APPLICATION

Francisco Amador,
Antonio Barco
Escuela Superior de Tecnica Empresarial

Agricola (E.T.E.A), Cordoba, Spain.

Carlos Romero
Universidad de Co6rdoba, Departamento de Economia

y Sociologia Agrarias, Spain

ABSTRACT

In this paper a real problem related to the implementation
of the 1984 Agrarian Reform for Andalusia (Spain) is ana-
lysed. The problem lies in the degree of conflict between
one of the main objectives of the agrarian reform programme:
to provide stable employment, and perhaﬁs the main objective
of the labourers associated into cooperatives established by
the Agrarian Reform: maximisation of business profitability.
A compromise between both conflicting objectives in this real
case is established by resorting to multiobjective and com-

promise programming techniques.

Key words: agrarian reform, compromise programming, multi-

objective programming, rural employment.
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STRANGE: AN INTERACTIVE METHOD FOR MULTI-OBJECTIVE
LINEAR PROGRAMMING UNDER UNCERTAINTY

J. Teghem Jr., D. Dufrane, M. Thauvoye
Faculté Polytechnique de Mons, B - 7000 Mons (Belgium)

P. Kunsch
BELGONUCLEAIRE S.A. - B - 1050 Brussels (Belgium)

ABSTRACT
In the field of investment planning within a time
horizon, problems typically involve multiple decision

objectives, and basic data are uncertain. 1In a large number
of cases, these decision problems can be written as linear
programming systems in which time dependent uncertainties
affect the coefficients of objectives and the RHS of the
constraints. Given the possibility of defining plausible
scenarios on basic data, discrete sets of such coefficients
are given, each with its subjective probability of occur-
rence. The correspdnding structure is then characteristic for

Multi-Objective Stochastic Linear programming (MOSLP).

In the ©paper, an interactive procedure is described to
obtain a best compromise for such a MOSLP problem. This
algorithm, called STRANGE, extends the STEM method to take
the random aspects into account, It involves in particular,
the concepts of stochastic programming with recourse. In
its interactive steps, the efficiency projection techniques
are used to provide the decision-~maker with detailed

graphical information on efficient solution families.

As an illustration of the successive steps, a didatic

example is solved in some detail,
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