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COMPUTATIONAL TECHNIQUES FOR
SOLVING GLOBAL OPTIMIZATION
PROBLEMS

Panos M. Pardalos

Department of Industrial and Systems Engineering
303 Weil Hall, University of Florida

Gainesville, FL. 32611

Abstract

Global optimization has been the subject of active research in the last two decades. The
outcome of this research includes results on the complexity of global optimization
problems, modeling of applications, and the development and implementation of numerical
algorithms, We will discuss recent developments in global optimization with emphasis on
computational algorithms for solving some structured global optimization problems.

Resumo

A Optimizagfo Global tem sido nas iltimas duas décadas uma 4rea de investiga¢do
bastante activa. Nessa investigagdo hd a distinguir resultados de complexidade
computacional, modelos de aplica¢do ¢ desenvolvimento e implementagfio de algoritmos.
Neste trabalho sfo discutidos alguns desenvolvimentos recentes da optimizagdo global,
sendo dado especial enfase aos algontmos para a resolugdio de alguns problemas de
optimizagdo global com estruturas especiais.

Keywords: Global optimization, Interior point methods, Concave-cost network flow
problems, NP-hard.

1. Problem Formulation and Complexity
The general problem to be considered is to find the function valuc f* and

an associated feasible point x* such that
£ = f(x*) = global min (or max) f(x)
xe S xe S

where S is some convex compact set and f is a continuous function. Problems
of this form have a wide range of applications in operations research,
economics, engineering and computer science [10], [41].

If the objective function is convex, then every local minimum is global,
and many classical local optimization techniques can be used to solve the
above problem. Therefore convex minimization problems are considered as
computationally "easy" problems. However, convexity of a function cannot
be easily recognized. For example, there is no known algorithm to decide
whether a fourth degree polynomial (in R") is a convex function or not. In
addition, it is not clear that convexity is the key property that separates
"difficult problems" from "easy problems". There are several classes of
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nonconvex optimization problems that can be solved in polynomial time [37],
[57]. Hence, in general we prefer to use the term "global optimization" than

“nonconvex optimization", A
The task of determining the global (or even a local) optimum of f(x) is, in

fact, a NP-hard problem. In [44] it is shown that the following problem
global min f(x) =x; ~ x%
xe$

where § is a polytope in R" is a NP-hard problem. Furthermore, checking if a

feasible point is a local minimum of the quadratic programming problem

min f(x) =-x%— Fxg+xn+1
xeP

where P is a polytope in Rn+1, remains a NP-hard problem.

Most of the traditional optimization methods are designed to compute
Kuhn-Tucker points. It can be shown, that the problem of deciding existence
of a Kuhn-Tucker point is also NP-hard (even when the function is
quadratic). For example, the problem of finding (or providing existence of)a
Kuhn-Tucker point for the quadratic program

. T, 1T
f(x) = +5
)r(n>116 x)=cx A X Qx

where Q is an nxn symmetric matrix and xe R", is equivalent to solving a
corresponding symmetric Linear Complementarity Problem with data Q and
¢, which is NP-hard. Most of these complexity results characterize worst-
case instances of the problems. Nevertheless,. they are indicative of the
difficulty of the general global optimization problem.

In the last three decades a variety of deterministic algorithms have been
proposed. In order to solve for the global optimum of large scale problems in
engineering and business applications, it is necessary to design algorithms
which take advantage of the special structures usually present in such
applications. Often this involves functions of a particular type and special
types of constraints. Such types of problems include quadratic programming,
bilinear and linear complementarity problems, polynomial optimization,
separable programming, problems with Lipschitz functions, reverse convex
programming, and problems with a dc (difference of convex) objective
function. On the other hand we have problems with network constraints,
sparse problems, and black-box type optimization problems where the
objective function is not given in analytic form.
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Constrained global optimization algorithms (both parallel and serial) can
be categorized into two groups: stochastic and deterministic. The stochastic
approaches tend to be faster but unfortunately do not, in general, provide
bounds on the global optimum function value nor do they guarantee that the
global optimum will be obtained. On the other hand, the deterministic
approaches, although somewhat slower, usually provide bounds and
guarantee that the global optimum will be determined. Regarding stochastic
methods see [331, [5], [50], [52] and [54]. In this paper, we will consider
only deterministic approaches for solving some classes of structured global
optimization problems,

2. Separable Programmi'ng

The most extensively tested parallel deterministic approaches are those
discussed in [40], [41], [46] and [47]. The general problem considered is to
find

¥* = global « )I,n;r)le W(x, y,2) = B(x) +dLy + s(z)

where § is nonempty bounded polyhedral set in R™¥*P_ The nonlinear term
@(x) is assumed to be separable and concave whereas the nonlinear term s(z)
is assumed only to be convex (but not necessarily separable). A large number
of functions can be expressed in this form including the very important
classes of quadratic and synomial functions. Quadratic programming can be
easily reduced to a separable probiem using the spectral decomposition
theorem [41], or an LU factorization of the corresponding symmetric matrix.

Many practical problems in engineering design can be formulated as
global optimization problems. For example, the class of posynomial
optimization problems, for which the theory of geometric programming was
originally developed, can be transformed into partially separable problems. In
an engineering design problem, the function to be minimized can often be
expressed as the sum of component costs of the form

u; = ¢ il 2, him

where c; > 0 and a;; are specified (possibly negative) real constants, and the
design parameters t; are assumed to be positive variables. Hence, the

objective function can be expressed as the synomial function



6 P.M.Pardalos | Techniques for global optimization

n
a. . a.
g) =Y c; it iz (Rim,
=1
The general constrained synomial optimization problem with p inequality
constraints can then be expressed as

n m
min gt) =), ¢; IT £fii.
=1 J=1
subject to
m
gc® = 2, by 1n(t) by, k= 1,..., p
El

where t> 0,j=1,..., m, is assumed, and the coefficients bkj and right hand
sides by are specified real constants. By defining

m
Xi=2, aj In(t),i=1,...,n and
1 ,

zi=In(),i=1,...,m,
then the general synomial optimization problem can be transformed into a
partially separable optimization problem. See [47] for more details on this
transformation.

The general (parallel) algorithm for solving the partially separable global
optimization problem is of the branch and bound type and is as follows:
(1) Compute a hyperrectangle which encloses the feasible region S by
solving the multiple cost row linear program (in parallel)

max X;
x,y,2)e S
for i=1,..,n (xeR").
(2) For each hyperrectangle currently available, do (in parallel):
(2.1) Use some heuristic method to compute a lower bound (LLB) and
an upper bound (UB) for ¥*, and use these bounds to possibly

eliminate parts of the hyperrectangle from further consideration.

(2.2) IfUB-LB <¢ (e is a specified tolerance) then eliminate this
hyperrectangle from any further consideration, and save UB
(and its associated feasible point) as a possible global optimum
function value.




P.M .Pardalos | Techniques for global optimization 7

(3) For each hyperrectangle remaining after step 2, pick some coordinate
direction and bisect the hyperrectangle into two new sub-
hyperrectangles and go back to step 2.

(4) If no hyperrectangles remain after step 2, then set ¥* to be the smallest
of all the upper bounds (UB) obtained and x* to be the corresponding
feasible point.

Step 2.1, computing the upper and lower bounds, is very important
computationally since it is the heuristic Step which will allow the method to be
efficient. A method for underestimating the concave part 9(x) of the objective
function over various subregions of the hyperrectangle.is described in detail
in [41] and [35]. This procedure reduces the problem to the simpler case of

_convex minimization. In addition, a procedure is developed which enable
parts of the feasible region to be eliminated at each step.

Given the hyperrectangle defined by:

R={x:Bj<x<Ppi=1..,n}

a convex underestimator ¥ (x) + dTy + s(z) can easily be constructed to agree

with the nonconvex function g(x) + dTy + s(z) at all vertices of R. That is,

since @(x) is separable, then ¥ (x) will just be a linear function which
interpolates @(x) at each vertex of R. Furthermore, the solution of the convex
program

i Yx)+dly+
(x,;r;l,]f)les (x) y +5(z)

will provide not only a candidate solution (upper bound) UB but also (a lower
bound) LB on the global optimum function value ¥*, If UB - LB < € then an
e-approximate solution (i.e. the relative error in the objective function is
bounded by the user specified tolerance € > 0) over this hyperrectangle has
been found and the procedure may be terminated (as stated in step 2.2).

If this tolerance has not been achieved, then the hyperrectangle may be
divided into any number of smaller hyperrectangles. One such choice is to
generate 2n sub-hyperrectangles by alternately bisecting each coordinate
direction (see [47], [41]). That is, for

R= {ix . Bil < X < BiZ’ i= 1,..., n}
and each coordinate direction &, the two sub-hyperrectangles
le = {X : Bil <)% < Bi2’ i=1,.,n, Xj < (B_]l + ﬁﬂ)/Z}
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and
Rjp={x: P <x;SPig,i=1,...,n, Bj + P2 < x;)

are constructed. Again, the convex underestimators which agree with the
original nonconvex function at every vertex of the smaller sub-
hyperrectangles may be easily computed and minimized over the original
feasible region. For each of these convex programs, another, possibly better,
upper bound will be obtained, but the resulting optimal function value does
not immediately provide a new lower bound. If ¥;; and ¥}, denote the
optimal function values obtained from the 2n convex problems and ¥;; and
Wi, denote the corresponding candidate solutions then the new lower bound

may be obtained from
LB=  max min{¥;,7},]).

1=

serey

Additionally, an elimination procedure can be used such that if ¥}, > ¥},
then the "first" half of the hyperrectangle R;; may be eliminated from further
consideration [47], [41]. Likewise, if ¥, > ¥}, then the "second" half of the
hyperrectangle Rj, may be eliminated from further consideration. Naturally, it
is possible that neither of the conditions may be met. If it is the case that no
subregions are eliminated after the 2n convex optimizations, then the heuristic
step must halt with the best available upper bound UB and the best available
lower bound LB. If any of the subregions are eliminated, then the same
procedure may be repeated on the resulting hyperrectangle.

It should be noted that even though this procedure is highly parallel (all 2n
convex programs may be solved in parallel), the procedure is not guaranteed
to result in an e-approximate solution until the hyperrectangle is sufficiently
small. But, according to the extensive computational experience cited in [46]
on indefinite quadratic problems, the heuristic is extremely efficient in practice
(see also [46])).

In order to guarantee that the algorithm will terminate at an e-approximate
solution, the direction in which to perform the bisection in step 4 must be
selected in an appropriate way.

A large amount of computational testing has been performed for the case
when the nonlinear terms are quadratic. Numerous results are cited in [46] for
this case and it is observed that when the algorithm is implemented in parallel,
super-linear speedups may be obtained in certain instances (in this case, the
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serial algorithm used was just the parallel algorithm limited to one processor
but with no communication costs). Similar results are sited in [47] for the
more general case of synomial functions.

Parallel branch and bound algorithm have been used successfully for
solving difficult combinatorial optimization problems such as 0-1 integer
programming and the quadratic assignment problem. For different issues
related to these approaches see the recent article by Pardalos and Li [38].

3. Large Scale Block Structured Problems

Optimization problems with a block-structure occur in many important
large-scale applications and have been the subject of study for many years.
Many of these larger problems can be broken into subproblems of lower
dimensionality. In many cases these subproblems can be solved
independently and the union (or some appropriate adjustment) of their
solution is the solution of the original problem, For a specific decomposition
algorithm to be computationally effective, the subproblems must have fewer
variables and/or constraints than the original problem, and the algorithm
should take advantage of the structural characteristics of the problem. The
idea of decomposition is not new. In fact, ideas about distributed computing
techniques were proposed by G. Dantzig and P. Wolfe as early as 1960 for
the solution of large-scale problems using decomposition methods [4].

One of the most common practical types of global optimization involves
problems of a very large scale with a special structure. Specifically, consider
the block structured problem

N
global min w(y) + Y, £9(x, y)

1=1
subject to the constraints

DD y)20,i€1?,j=1,.,N
where x(l), x(z),. s x(N), and y denote vectors (possibly of different
dimensions), and the index sets I(l), 1(2),. v I(N) are disjoint. Clearly, y is the
only coupling variable, the absence of which would provide N independent
optimization problems available to be performed in parallel. In fact, if the
optimal value of 31 were known, then by fixing y at that value, N independent
subproblems are available to be solved in parallel.
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The general idea then is to decompose the solution into two phases: a
master problem involving the linking variable y only, and N independent
subproblems involving the remaining variables. In particular, the master
problem can be stated as

‘ N
min w(y) + 3, vi(y)
=1

subject to the constraints

yev® i=1,. N
where the function v;(y) is the ith independent subproblem

vi(y) = min f0(x, y)
subject to

gJ(i) (x(i) ,¥) 20 for je @
and v denotes the definition areaof vi(y). Clearly, this sort of
decomposition scheme permits the solution of the N subproblems in parallel
at every iteration. For more details, applications to en gineering problems, and
related references see [2], [9], [29], [30] and [40].

4. Interior Point Methods
During the last decade, a number of interior point approaches have been
considered for solving linear and convex quadratic programming problems.
Some of these approaches have been extended to solve nonconvex quadratic
problems ([21], [27], [57]). In [21], computational aspects of an interior-
point algorithm (see also [58]) for indefinite quadratic programming problems
with box constraints are presented. The interior point (IPA) algorithm finds a
stationary point that satisfies the Kuhn-Tucker conditions, by successively
solving indefinite quadratic problems with an ellipsoid constraint. The
proposed algorithm has been implemented on an IBM 3090 computer and
tested on a variety of dense test problems, including problems with a known
global optimum. The problem has the followin g special form:
min f(x) = % X'Qx +¢'x (4.1)
s.t. xS = {xeR"10<x<e),
where e is a vector of all 1's. In the IPA algorithm, we solve an indefinite
quadratic program (IQP) subject to an ellipsoid constraint at each step. It is
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known that the IQP with an ellipsoid constraint can be solved in polynomial
time (e.g., [58]). First, we describe the main algorithm, IPA, and then
presént the procedure, IQE, which is used to solve an indefinite quadratic
program with an ellipsoid constraint.

Initially, we have a starting point x that is interior to the feasible region.
We consider an ellipsoid E; with center x? that is inscribed in the feasible
region. Then, we solve the IQP problem with an ellipsoid E, constraint using
the procedure IQE. Let x" be a solution of the problem. Again we consider an
ellipsoid E, with center x! that is inscribed in the feasible region. By
repeating this process, we compute a sequence of interior points xO, xl, x2,. .
After sufficiently many steps, we obtain a stationary point of problem (4.1).
The following summarizes the algorithm IPA.

Algorithm IPA
1.k= 1;x0= 1/2e; D, =diag(%-,..., %).
2 . Consider an ellipsoid By € [0, 1]" with center xk'1 such that
E = (x 1 IDx - x*YI<r<1).
3. Solve the following indefinite quadratic problems with an ellipsoid
constraint using the procedure IQE (that will be discussed later).

min £(x) =5 x"Qx +¢'x (4.2)

s.t. xe€Ey.
Let x“ be a global minimum of (4.2).
4 . Checking stopping criterion:
If x* does not satisfy the stopping criterion, then compute Dy,
where
Dy, = diag(,,..., d;) and d;=min(x, 1-x5},i=1,...,n.
k =k + 1; goto step 2, v
Else x“is an approximate stationary point of (4.1).
Now we describe details for solving problems of the form (4.2). Consider
the following indefinite quadratic problem with an ellipsoid constraint:

min £(x) =% x0x + o 4.3)

st. 1D M x—a)ll<r,
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where Q is indefinite and D = diag(d;), d; > 0,i = 1,..., n. Problem (4.3) has
a global optimum solution x* iff (e.g., [34], [53])

(Q+pD?)Ax =~(Qa + ), (4.4)

1D Ax Il =1, (4.5)

and Q-+ puDis positive semidefinite, (4.6)
where Ax = x* — a. The equation (4.4) can be written as

(DQD + uDD 'Ax = -D(Qa +c). 4.7

Let
DQD = (_2’ D-IAX = Ai, and —D(Qa + C) =-C,
The, equations (4.4)-(4.6) become

@Q +pDAX = ¢, (4.8)
Il A% Il =T, 4.9
pR21MQ |, (4.10)

where A(Q) is the minimum eigenvalue of Q. If we assume that Q is
nonsingular, since DQD is a congruent transformation and Q is an indefinite
matrix, M(Q) is negative. For any symmetric matrix Q, we have an orthogonal
matrix Ue R such that

U'QU=AandUUT =1,
where A =diag(X;),i=1,..., n. Note that the columns of U are eigenvectors
of Q. Since Q = UAUT, from (4.8),

UTuAuT + pnax = U7 e, 4.11)
Then, system (4.8)—(4.10) becomes
(A +ppUTAax = U, (4.12)
U AR I =1, (4.13)
p21AMA) =100 I. (4.14)
Let AX = UTAX and = U'G. Then we have
(A + UDAR = -3, (4.15)
NAR N =1, (4.16)
p21AA) L 4.17)

If we solve the system (4.15) — (4.17) and get AX, then from the relations
AR = UTAX and A% = D 'Ax, we can obtain Ax that is a solution of (4.4) -
(4.6). It is clear that the system (4.15) — (4.17) is simpler than the system
(4.4) - (4.6) since we have only a diagonal matrix A in (4.15) — (4.17).
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We will discuss a method to solve the system (4.15) — (4.17). For
simplicity call A, = MQ) the smallest (single) eigenvalue of Q. There are two

cases we have to consider:
1.5, =0.
We search for a p that satisfies

Y (—fiy g

=1 HtA
¢yl i<yl
by using a binary search for | A | + I—%‘— <psiAg b+ -\l—?l-f-n-f—xL(;—l-
2 o 61 = O.
n .
Set u =1A; | and compute s = Z (Afi)2 where AX; = 0 and for
i=2
i=2,.., m
AR;=—d— ie., AT is the minimum-norm solution of (4.15).
|7\,1|+7\,1
If s < 1° then

(%) =r"-s.
do Choose_a_sign_of_AX,.
else (s > 1°)

n =, 2
find a 1 that satisfies s = Y, ( ! )" <1? using a binary search

2 H+M
vn max;/jl

forIAl<p<IA I+

(A)?l)2 =’ _s.
do Choose_a_sign_of_AX,.
endif.
In the above approach, r is a constant between 0 and 1. In practice, r can
be flexibly chosen as long as ** + Ax is an interior feasible point. This will

result in a larger step to obtain K theory, the sign of AX; should not

make any difference for f(ka). However, in the subprocedurc

Choose_a_sign_of_AX;, we choose the sign of AX; to be that which
makes f(ka) smaller in practice.

From AX, we can obtain Ax. Then a + Ax = x*isa global minimum of
(4.3) and
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f(2) — fx*) = g pr? + 5 AxT (Q + DDA > 0.
Next, we summarize the procedure IQE at step k.
Procedure IQE

1. T=D(@Qx ! + o)

2. Ap i=1,..., n are the eigenvalues of Q = D, QD and let Aj be the
minimum eigenvalue and U is a matrix whose columns are
eigenvectors of Q = D QDy;

3.T= UTc;

d.p =121,

\/_ﬁmaxilfil
“,3 = l Kl I + _T_',

5. Solve the system (4.15) — (4.17).
If S, # 0 then do binary search for p, + @ <p<ps;

else fix L =12, | and let AX be the minimum-norm solution of (4.15);
n
if 3 AZ? > 1 then
i=2
do binary search for j; < p < pg;
endif,
AR 1= - 2 A2 i
i=2
do Choose_a_sign_of AX;
endif.

6. Ax = DAX = DU TAR = D UAR.

7. X =5k g Ax.

We can verify that the above procedure is a worst-case polynomial-time
algorithm. In practice, one can use a very efficient algorithm described in
(34].

We imblemented the algorithm IPA on an IBM 3090-600S computer with
vector facilities using the VS Fortran compiler and double precision accuracy
for real variables. The ESSL subroutines were used for matrix and vector
operatlons random number generation, and the eigensystem solving.
Il %K = XK II2 < 10E-4 was used for stopping criterion of the main algorithm
IPA. We used binary search for the parameter W in IQE and the binary search
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was terminated when "upper_bound-lower_bound" < 10E-8 was satisfied.
From the preliminary computational results, we found that when the
parameter 1 is close to 1, the number of iterations needed to find a stationary
point becomes small. Thereforé, we set r = 0.99 in our implementation. All
averages were obtained from 5 problems and CPU times are given in
seconds. 4
We have two parameters for generating the test problems: the number of
active constraints (nac) at the optimum solution and the number of negative
eigenvalues (neg) of matrix Q. Note that neg < nac. We solved two types of
dense test problems: test problems (see [21]) with a known solution (type I)
and random problems (type II). For generating type I test problems we have
the following:
1. The optimum solution x* is chosen randomly such that x’fe 0, 1), for
i = 1,..., n. Half of the m active constraints are active at the upper
bound.
2. The orthogonal matrices, U; and U,, are Householder matrices of

R("'m)x("'m), respectively. Each

random vectors ve R™™ and we
element of v and w is chosen randomly from (0, 1).
3. The eigenvalues A, i = 1,..., n, of A are chosen randomly so that
I1<IlAl<2,i=1,.,n
4. The submatrix Ae R™™™ of W has elements ajj, i = 1,..., m,
j =1,..., n~m, chosen randomly from (0, 1).
5. Choose the diagonal matrix H such that F + H is diagonally dominant,
Table 1 shows the computational results obtained by solving test problems
with a known optimal solution. From Table 1, it is observed that IPA takes
more steps to converge to a stationary point as the number of active
constraints increases. We investigated the relationship between the number of
negative eigenvalues of matrix Q and the complexity of the test problems with
a known solution. Table 2 shows that the number of iterations is not
dependent on the parameter neg. It is interesting to note that the algorithm
always found a global minimum for these type of test problems (although
many local minima exist).
Next, we solved randomly generated indefinite quadratic problems (type
II). The matrix Q was generated by Q = UTAU, where U is an orthogonal
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matrix (Householder matrix of a random vector v, where 0 < vi<l,i=1,...,
n) and L is a diagonal matrix whose diagonal elements are chosen randomly
from '
-2<Aj<~1,i=1,.., neg,
1<Aj<2,i=neg+1,..,n.

nac Avg Itr. Avg.CPU time
10 40.8 10.4
30 68.8 15.2
50 9.4 19.1
70 100.4 20.7
90 118.8 28.9

Table 1: IPA on varying nac (n = 100, neg = nac)

nac - Avgltr, Avg.CPU time
10 94.6 19.1
20 95.0 19.1
30 105.8 21.1
40 97.4 19.4
50 94.4 19.1
60 104.4 20.9

Table 2: IPA on varying neg (n = 100, nac = 60)

The vector ¢, 0 <¢; < 1,i=1,..., n is generated randomly. Table 3 shows
the computational results for type I test problems. Note that all test problems

we solved are dense.

nac Avg Itr, Avg.CPU time
10 88.6 19.3
30 94.4 20.7
50 97.2 22.1
0 91.4 22.4
90 86.8 22.0

Table 3: IPA for randomly generated problems (n = 100, neg = nac)
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The preliminary computational results (with dense problems) show that
the difficulty of the problem is not dependent on the number of negative
eigenvalues of Q. However;-our algorithm needs more steps to converge to a
stationary point as the number of active constraints increases. Although the
algorithm is not guarenteed to find a global solution of the problem, it was
observed that the algorithm found the global minimum in many cases. Further
research is needed for applying the algorithm fo solve large sparse problems.
The main difficulty for solving large sparse problems is the availability of
software for computing the eigenvalues and eigenvectors of large sparse

matrices.

5. Minimum Concave-Cost Nefwork Flow Problems

In this section we are going to discuss a special class of concave
minimization problems with network constraints. The single-source
uncapacitated (SSU) version of the minimum concave-cost network flow
problem (MCNFP) requires establishing a minimum cost flow from a single
generating source to a set of sinks, through a directed network. All arcs are
uncapacitated, indicating that the entire source flow can pass through any arc.
The SSU MCNFP can be stated formally as follows:

Given a directed graph G = (Ng, Ag) consisting of a set Ng of n nodes
and a set Ag of m ordered pairs of distinct nodes called arcs, coupled with a
n-vector (demand vector) d = (d;) withd; <Oandd;20,i=2,...,n,and a
concave cost function for each arc, cij(xij), then solve

globalmin ), cj(xi))
(deAg

subject to

Y xki— D, xik = d;, VieNg (5.1)
kieAg  (iLKeAg
and
0 <x;, V(i, DeAg 5.2)
All constraints and demands are assumed to be integral. The requirement that
only d; < O corresponds to the single-source case. The lack of an upper
bound for the Xjj gives rise to the uncépacitated case,
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The SSU MCNFP is a concave optimization problem over a polyhedron.
Hence, if a finite optimal solution exists, then there exists an exireme point of
the feasible domain that is optimal. For the SSU case an extreme flow
(corresponding to an extreme point) is a tree. The leaves of the solution tree
correspond to a subset of the sink nodes. The integral constraints and
demands give rise to extreme flows of integral value.

A SSU MCNFP has a finite optimal solution if it contains no negative cost
cycles, and all sinks are reachable from the source (i.e., there exists a directed
path from the source to each sink). The latter requirement is necessary for the
existence of a feasible flow. The presence of a negative cost cycle would
imply an unbounded negative cost solution; the absence of such a cycle
guarantees a finite solution [31].

Efficient algorithms for the SSU MCNFP have been found only for a
small set of structured problems. This is not surprising as the general global
search problem for the SSU MCNEP is known to be NP-hard [13], [14],
[31]. An overview of existing techniques for general MCNFP can be found in
[15]. Due to the complexity of global search, numerous techniques based on
local search have been developed.

Here, we consider cases of the SSU MCNFP with arc flow costs that are
non-negative, non-decreasing and concave. This property of objective
functions accurately reflects cost functions for models of real world problems
in areas such as production planning and transportation analysis. For
example, in a production setting, decreasing concave arc cost functions would
exclude the influence of demand on production.

A solution X to a SSU MCNFP is locally optimal if no better solution
exists in a specified neighborhood of X. Varying the definition of
neighborhood results in different conditions for a local optimum. The
standard marginal definition of local optimality defines a neighborhood of X
to be .
Ne(X) = {X'1 X' satisfies (1) and (2)and IX-X'li <e}
for a specified vector norm and € > 0. Local search based on Ng for concave
optimization is explored by Minoux [32] and Yaged [56]. For the single
commodity case with fixed-charge arc costs, all extreme points are local
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optima. This led to the development of the following generallzed definition of
neighborhood by Gallo and Sodini [12]:
Napp(X) = {X' | X' satisfies (1) and (2) and
X' is an adjacent extreme flow to X}
Here, X' is an adjacent extreme flow to an extreme solution X if X' is an
extreme flow, and XUX' contains a single undirected cycle.
An even more relaxed definition of neighborhood is the following:
NAp(X)={X' | X' satisfies (1) and (2)'and X' is an adjacent flow to X}
’ Here, X' is an adjacent flow to an extreme solution X if X' results from
rerouting a single subpath of flow within X. This concept of neighborhood
was developed by Guisewite and Pardalos [14] for single-source problems,
and independently by Plasil and Chlebnican [48] for the multicommodity
case. We emply both N ppg and N neighborhoods in our global heuristic.
Extensive computational results (applied to random initial solutions and
greedy initial solutions) in [14] indicate that the choice of neighborhood for
local search affects the processing time for convergence. The rate of
convergence for random initial solutions is significantly slower than for the
greedy initial solutions. This is due to an increased number of iterations
required for convergence. However, the objective value of the computed
solutions generated from local search with random startmg solutions is
roughly the same (on the average). For details see [14].

Next, an exact global search algorithm is presented for SSU MCNFP.
The full algorithm is based on branch-and-bound enumeration of extreme
feasible solutions. The basic enumeration subset of the algorithm exploits the
fact that extreme feasible solutions correspond to sub-trees in the network.
These sub-trees are constructed by establishing a path from each sink to the
source node. Bounding the search is achieved using linear underestimation
after a path is constructed, This allows the underestlmatmg function to gain
efficiency as the search progresses. .

Numerous exact algorithms have been proposed for the general MCNFP
[15]. Extreme point ranking methods [35] rely on linear underestimation
applied to the initial problem. Results in this section demonstrate that the
initial underestimation can be quite poor for this class of problems. Some
branch-and-bound algorithms for MCNFP perform branching on the arc cost
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functions to improve the linear underestimation [3], [28], [51]. For these
approaches, worst case processing time can exceed a brute-force enumerative
approach. Other branch-and-bound approaches, such as in [8], suffer severe
performance penalties when degenerate problems are encountered [15].
Dynamic programming solutions to MCNFP require excessive storage
requirements [6]. The proposed algorithm can incorporate dynamic
programming to efficiently solve subproblems, while limiting the storage
rcquireménts.

The basis of the exact global search algorithm is a procedure that
systematically enumerates the extreme feasible solutions of the current SSU
MCNEFP. As noted earlier, these correspond to sub-trees of G = (Ng, Ag)
that establish a path from the source to each sink. A path is constructed from
each sink to the source node over reversed arcs. As in thé random search
algorithm, non-extreme solutions (cycles) are avoided by labelling nodes as

follows:
0 if node i is unused

visited(i) =4 1 if node i is in the current sink path  (5.3)
2 if node i is in a previous path

This labelling defines a partition of the nodes of G
| Ng = NJUNSUNG (5.4)

where nje N(i; implies visited(n;) =1.

The current state of the enumeration process is summarized by a collection
of stacks, one for each completed path from a sink to the source, and one for
the current active path. Each entry within a stack contains a node in the path
defined by the stack. For each node, additional information is maintained,
including the visit value, a pointer to the next element in the path, and a
poiriter to the current in-coming arc under consideration for the node.
Processing within a stack is similar to any branch-and-bound procedure.
However, additional processing is required to handle cases where a stack
becomes empty, or a path is completed,

If a stack becomes empty during the enumerative search, augmenting
paths to the previous stack have been fathomed. The current stack is popped,
and the previous stack becomes active again at its top node. This implies that
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the entries in the previous stack have their visit value reset to 1. When a path
is completed, all entries within the current stack have their visit values set to
2. When the last stack is popped, the search is complete.

Clique of size k

Figure 1: Worst case dead end for enumerative search

The algorithm presented above does not have processing time proportional
to the number of extreme feasible solutions for the current problem. A worst
case example of the effects of a dead-end is presented in Figure 1. The current
search node is 1, and the current path is depicted by the thicker arcs. For this
casé, the dead-end contains a clique of size k. The enumerative search process
would enumerate all paths through the clique before establishing that no
feasible path exists to the source or to any node in a previous path.

Fortunately, this can be avoided with some additional processing. When a
new node is added to the current search path, all nodes reachable on the
network G' = (NgUNé, Ag) are computed, where Ag is the set of arcs in Ag
connecting nodes in NgUNé. The reachable nodes can be identified by
solving a single-source shortest weighted path problem. For the example, the
entire clique would be removed from consideration when node 2 is added to
the current search path.

The global search algorithm can be extended to exploit the cost functions
assigned to the arcs. For the case with non-decreasing cost functions, the cost
incurred by an arc at an intermediate point in the algorithm cannot decrease
with the addition of other paths. This can be exploited by maintaining a
running cost of the current search at each position of the stack. This
corresponds to the cost of the current flow up to the active node being
processed. If the current flow cost exceeds the current best solution, then the
search can be terminated for the current path, and the next path in the search
can be considered.
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The arc cost functions can be exploited further by using linear
underestimation to project a lower bound on the cost of extending the current
path. This is achieved by

e Computing the maximum possible flow through each node i, based
on the sinks reachable from node i, node.max(i).

o Maintaining the current flow through each node i, node.current(i).

» Maintaining the current flow through each arc (i,j), arc.current(i,j).

Initially, the maximum flow possible for any arc (i, j) is node.max[j]. The
minimum flow through any arc, initially, is 0. During the search process the
bounds on arc (i, j) can be tightened;

upper.bound(i,j) = node.max(j) — (node.current(j) — arc.current(i,j))
lower.bound(, j) = arc.current(i, j) . (5.5)

(D—®

Clique
of size
k

Remaining network

Figure 2: Simplex subproblem example
The linear underestimation process uses the refined bounds and the
currently unsatisfied sink nodes to project a lower bound on the final cost of
the current search. This is achieved by computing new arc costs
~ corresponding to the linear underestimating cost:

¢;i(upper.bound(i,j)) — cj;(lower.bound(i,}))

linear.cost(i,j) = upper.bound(i,j) — lower.bound(i,)) (5.6)
Then the cost of an augmenting flow on arc (i, j) incurs cost
ci'j(xij) = linear.cost(i, j) * Xjj 5.7

A single-source shortest weighted path problem can be solved to obtain the
shortest path from the source to each currently unsatisfied sink, using the
linear.cost vector as the arc weights.

The enumeration process can be further improved by detecting
subproblems that can be more efficiently solved using other techniques. For
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example, the network in Figure 2 has a subproblem to sink t; that can be
solved using a shoriest weighted path algorithm. More general cases that are
computationally expensive for enumeration, but more efficiently solvable by
dynamic programming include sub-networks that have small total in and out-
degree, and contain a large number of nodes.

Some simple subproblem cases can be detected by computing spanning
trees for small perturbations of network G. For exaimplc, if subproblems with
in—degree‘ and out-degree of one are sought, then O(n) spanning trees need to
be computed. For each node nje Ng, two problems are solved. The first
identifies those nodes no longer reachable from the source when n; is
removed from network G, denoted by SCUT;. The second identifies nodes
that are disconnected from all sinks when n; is removed, denoted by TCUT;.
The intersection of these sets for each node pair identifies a candidate
subproblem, SUBy; = SCUT{NTCUT;. The process can be applied once, and
the maximal subproblems can be removed iteratively.

In general, the problem of identifying the best subproblem can be NP-
complete. For example, if we require that a subproblem have a specified
lower bound on the number of nodes, and search for the node set with
minimal total degree, then the problem corrésponds to the Graph Partitioning
] prbblem [13]. However, heuristics, such as the Kernighan-Lin algorithm,
have been successful identifying subgraphs with the desired property, or near
to the desired optimum,

The enumeration process can avoid re-solving the detected subproblems
by collapsing each Subproblem into a single super-node. When a super-node
is encountered during the search prdcess, the sub-problem can be solved if it
is new, or, its solution can be extracted using a look-up table if it was
previously solved.

The overall process of exploiting subproblems can be viewed in relation to
the send-and-split algorithm [6]. In send-and-split, the optimal flow for the
entire network is solved using dynamic programming. This requires
substantial storage, but recomputes all subproblems. The full enumeration
algorithm requires little storage, but recomputes all subproblems. By
exploiting a select subset of the subproblems, the resulting algorithm gains
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efficiency, while reducing the storage requirements based on available
TESOUrces.

Next we are going to discuss preliminary computational experience. Test
networks are generated in a random fashion. Arcs are generated by computing
two random integers uniformly distributed in [1, 2,..., n], where n is the
number of nodes in the network. Duplicate arcs and arcs of the form (i, i) are
discarded. After the specified number of arcs is successfully generated, the
resulting network is tested for connectivity by solving a single source shortest
" path problem. If the connectivity is suitably high, then cost functions are
generated for each arc, Each cost function is of the form aijxiB » where oy;; are
uniformly distributed in [1, 2,..., 100] and the ﬁij are uniformly distributed in
[.1, .2,..., 1]. The test generator is implemented so that if two problems
contain the same number of nodes, and the same random number seed, but
have a different number of arcs then the smaller network generated is a subset
of the larger network.

The algorithms were implemented on one or multiple microprocessors.
Our processing system consists of one to twenty Transputer T800s. The
Transputer is a microprocessor developed under the European Espirit project,
~ and is designed to facilitate parallel processing. Each 20 MHz T800 consists
of a 10 MIPS fixed point processor, a 1.5 MFLOPS floating-point co-
processor, a 4 KByte cache, and 4 DMA 1/O processors, all on a single chip.
Our system includes 1 MByte of memory per processor. Experience indicates
that 3 to 5 MIPS are achievable by each processor for large general
processing applications. Four processors are configured in a pipeline on a
single board, with the remaining DMA links connected to the board edge
through a cross-bar switch.

Variations of the enumerative search process were applied to randomly
generated problems. The problems processed were of moderate density.
Analysis of the problems indicated that dead-ends did not have a serious
impact on the search. The networks were, also, preprocessed to identify
subproblems with in-degree and out-degree equal to one. No signiﬁcaht
subproblems of this type were detected. The algorithms used included

o Full enumeration (with no cost bounding)
o Cost bounding
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o Cost bounding with linear underestimation
o Initial solutions provided.

In Tables 4 and 5, results are provided for four problem sets, each
generated with a different random number seed. The effect of varying the
number of sinks while maintaining the network strcuture is investigated. The
results indicate that problems of moderate network size and density are
solvable using the algorithm with cost bounding. Linear underestimation
becomes efficient only for a few difficult problems. This is due to linear
underestimation requiring a substantial amount of additional processing at
each path completion. This could be avoided by selectively applying linear
underestimation based on the current path cost, the previous path cost, and
the amount of change between the current path and previous path.

In Table 6, results indicate that the quality of the initial solution has a
direct relation to the performance of the search, when cost bounding is
employed. These results, also, provide a comparison of the performance of
initial solutions computed using linear underestimation, random search, and
greedy algorithms coupled with local search. The initial solutions obtained
using random search were the best for all test cases. In fact, random search
detected the global optimum for all test cases in Tables 4 to 5. The initial
solutions computed using local search were, on the average, better than those
obtained using linear underestimation. Table 7 compares the number of
solutions that were fully processed for enumerative search with cost
bounding, and enumerative search with linear underestimation.

The exact global search algorithm, was demonstrated to be useful for
problems of moderate size and density. This approach has the benefit of
solving "easy" problems quickly, where an easy problem has few extreme
feasible solutions, or has few solutions with cost near to the cost of the global
optimum. The algorithm gains efficiency by bounding the search based on
cost properties, and projected cost based on linear underestimation. Initial
solutions obtained using random search and local search provide a good initial
_ approximation to the global optimum in most cases.
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TEST SET 1
‘Nodes/Arcs/Sinks Full Cost Linear
Enumeration Bounding Underestimation
10/40/5 4.64 13 .36
15/60/5 753.08 22 .52
15/60/10 7766.13 8.97 18.55
20/80/5 31820.84 1.15 2.50
20/80/10 X 25.84 41,77
20/80/15 X 624.96 1202.03
25/100/5 X 91 1.27
25/100/10 X 6.63 12.67
25/100/15 X 522491 12808.24
25/100/20 X 17908.40 44663.96
30/120/5 X 1.42 3.48
30/120/10 X 23.67 60.88
30/120/15 X 351.29 800.04
Table 4: Global search results — Test set 1
TEST SET 2
Nodes/Arcs/Sinks Full Cost Linear
Enumeration Bounding Underestimation
10/40/5 7.57 .37 .53
15/60/5 311.89 42 .58
15/60/10 3869.25 .82 1.10
20/80/5 3525.02 12,25 13.69
20/80/10 X 21.36 26.96
20/80/15 X 32.70 47.60
25/100/5 X 24 54
25/100/10 X 32,38 61.64
25/100/15 X 138.83 247.56
25/100/20 X 717.58 1254.99 .
30/120/5 X 1.61 3.58
30/120/10 X 63.43 154.51
30/120/15 X 2942.59 - 7320.70

Table 5: Global search results — Test set
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Test Set Technique Initial Time
(25/100/15) Solution (seconds)

1 GREEDY 1589.76 522491
LINEAR 1745.48 6351.81
RANDOM 1506.38 3583.58
2 GREEDY 1007.78 138.83
LINEAR 1133.64 152.96
RANDOM 943.46 115.46
3 GREEDY 764.12 8.10
LINEAR 1111.01 13.40
RANDOM 764.12 8.10
4 GREEDY 1600.26 3300.59
LINEAR 1869.02 3783.58
RANDOM 1558.54 2949.78
Table 6: Global search results — Varying initial solutions
Test Set Nodes/Arcs/Sinks Cost Linear
Bounding Underestimation
1 20/80/15 971 598
4 20/80/15 59222 519
1 25/100/15 17512 8927
4 25/100/15 928 162
1 30/120/15 72 27
4 " 30/120/15 X 11392

Table 7: Global search results — Number of solutions examined

6. Concluding Remarks

In this paper we gave a brief overview of some of the computational

approaches that are used to solve global optimization problems. We discussed

only a small class of deterministic algorithms, Other promising deterministic

apprdaches that have been used to solve global optimization problems include

interval analysis methods. For a recent reference on this subject, see for

example [49]. In addition, many approaches, such as genetic algorithms,

space filling curve methods, tuneling methods etc have been proposed and
used for solving different types of problems [10], [11], [25]. Many other

approaches are listed in the references below. Most of the computational

results presented in the literature are not directly comparable because different
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authors have used different test problems. Recently, Floudas and Pardalos
[10] have published a book on test problems for constrained global

optimization. It is hoped that the problems in that book could provide ihe

means io compare one algorithm against another.
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Abstract
The Linear Complementarity Problem (LCP) consists of finding vectors ze R" and

weR" suchthatw=q+ Mz, 220, w2 0and sz=0,where qeRnandMisasquare
matrix of order n. The LCP is strictly convex if its matrix M is (Ssymmetric or
unsymmetric) positive definite. In this paper the use of (single and block) principal
pivoting algorithms for the solution of large-scale strictly convex LCPs is discussed. A
computational study indicates that block principal pivoting algorithms are highly
recommendable to solve these LCPs and are in general superior over other alternative
techniques.

Resumo
. . n
O Problema Linear Complementar (LCP) consiste em encontrar vectores zeR e

weR" taisquew=q+Mz,z20,WZOesz:0,ondeqeRneMéumamam'z de
ordem n. O LCP diz-se estritamente convexo se a matriz M é (simétrica ou ndo simétrica)
positiva definida. Neste artigo ¢ investigado o uso de métodos pivotais principais (simples
ou por blocos) na resolugfio de LCPs estritamente convexos de grande dimens#o. Um estudo
computacional indica que os algoritmos pivotais principais por blocos s#io altamente
recomend4veis para a resolugdo deste tipo de LCPs e sfio em geral superiores a outras
técnicas alternativas,

Keywords: Linear Complementarity Problem, Convex Quadratic Programming, Linear
Variational Inequalities, Large-Scale Problems, Sparse Matrices,

1 - Introduction

The Linear Complementarity Problem (LCP) consists of finding vectors
ze R" and we R" such that

w=q+Mz,z20,w20,zTw=0 ¢))]
where ge R" and M is an n by n square matrix of order n. This nonlinear
optimization problem has received a great interest during the past twenty
years. Several direct, iterative and enumerative algorithms have been designed

* Partially supported by Instituto Nacional de Investigacio Cientifica (INIC) under project
89/EXA/5.
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for the solution of the LCP [32]. The LCP is equivalent to-the following
quadratic programming (QP) problem [6] ‘

inimize £(z) = q"z + 5 27 (M + MD)z @)
zeK

where
K ={zeR™ q+Mz20,z20)}
and three possible cases may occur:
f(z) = min f(z) = 0 = Z is solution of the LCP
zeK
i(z) = m1n f(z) > 0 = LCP is feasible but has no solution
zeK
K =0 = LCP is infeasible
Because of the equivalence stated above, the LCP is said to be Strictly
Convex if and only if its matrix M is positive‘deﬁnite (PD), that is
zI Mz >0 for all zeR"- {0} 3)
It is well-known that a strictly convex LCP has a unique solution for each
qe R" [32]. Furthermore it has been established recently [24] that strictly
convex LCPs can be solved in polynomial-time.
The LCP is equivalent to the following Linear Variational Inequality
Problem (LLVI)
Findz e R: such that
(z-2)T (q+Mz) 20 for all ze R 4
where
R:'_={zeRn:ZZO} (5
If M is a symmetric PD matrix then both the LVI and the LCP are
equivalent to the following Strictly Convex Quadratic Program (SCQP)
Minimize qTz + = 2T Mz < ©6)
zeR} 2
To date many applications of the strictly convex LCP have been proposed.
These include the solution of partial differential equations arising in Dirichlet
problems with obstacles [9, 16] or free-boundary value pre' lems, such as the
journal bearing [7, 8] and the elastic beam bending [43] problems.
Elastoplastic analysis of structures [34, 37], portfolio selection problems [36,
37] and spatial equilibrium models [38] are also examples of important
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applications of the strictly convex LCP. Strictly Convex Nonlinear Programs
and Monotone Variational Inequality Problems can be solved by sequential
algorithms relying on the solution of strictly convex LCPs [15, 20]. In most
of these applications the matrix M is large and sparse.

Single [18, 23, 33] and Block [21, 25] Principal Pivoting algorithms have
been recommended to solve strictly convex LCPs. Efficient implementations
for these algorithms exist for the symmetric case [5, 22, 35] and it is possible
to extend some of these procedures for unsymmetric PD matrices. Recently, a
damped-Newton method [19] has been developed for the solution of the
strictly convex LCP. A more practical version of this algorithm can be
designed in which a block principal pivoting methodology is incorporated. In
this paper we discuss all these techniques and corresponding implementations
for large-scale strictly convex LCPs.

As stated before, the LCP is equivalent to the SCQP (6) provided M is a
symmetric PD matrix. Therefore active-set methods [S, 13] can also be used
to solve the strictly convex LCP when M is symmetric. Projected S.O.R. [7,
8] and projected gradient [2, 9, 30, 44] algorithms have been developed for
the solution of the SCQP, whence they can handle the LCP when M is a
symmetric PD matrix. Computational experience on SCQPs with some well-
conditioned structured matrices indicates that these algorithms are efficient in
these cases [7, 9, 30, 44].

In this paper the efficiency of the algorithms stated above is investigated
by solving a number of large-scale LCPs taken from different sources. This
study indicates that Projected Gradient and S.0.R. methods are efficient for
some problems but they are not robust. The accuracy of the computed
solution is usually small and their behavior is catastrophic in presence of ill-
conditioning. Active-set and single principal pivoting methods are slow if the
initial and last solutions are quite different, whence they are not too
recommendable for large-scale strictly convex LCPs. A finite version of
Kostreva block principal pivoting method is shown to be quite efficient for all
the test problems and is in general superior to the remaining techniques.
Furthermore the damped-Newton method is shown to be usually competitive
with the block principal pivoting algorithm, but may face some problems
when M is an ill-conditioned matrix.
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The organization of this paper is as follows. Principal pivoting algorithms
and the damped-Newton method are discussed in sections 2 and 3
respectively. An implementation of these algorithms for large-scale strictly
convex LCPs is briefly described in section 4. A computational study of the
performance of the algorithms stated above for the solution of a number of
strictly convex LCPs is presented in the last section of this paper.

2 - Principal Pivoting Algorithms
Consider the LCP (1) and let F and T be two sets satisfying
FNT =@, FUT = {1,...,n)
where @ represents the empty set. If M is a PD matrix the same happens to
Mg [32], whence this latter matrix is nonsingglar [32]. Therefore w = q+Mz

is equivalent to
[;F ]=|:QF :I+I:MFF MFT:I[WF] @
T = Y v zZt
qr Mrp  Mrr
where
— 10— -1 - 1 -1
Mgg = Mpg, Mgy =-MppMpr, Mpp = Mg Mpg, Qp = -Mpgqg
(8
— -1 — -1
Mrr =Mrr - MygMpgMEr > Q- 9 - Mg MEgqg
A complementary basic solution for the LCP is a solution of the system
(7) in which wg = 0 and zy. = 0. The variables z;, ie T and w;, i F are called

nonbasic while the remaining variables are said to be basic. If follows from
(8) that the values of these variables can be found by

Solve Mgg qQp=-qg

« ©
Compute ET = qT + MTF aF

If the vector q is nonnegative, then
2p=qrp,2r=0, wp=0, wr=Qqr
is the unique solution of the LCP. Otherwise the set
H={i:q;<0} (10)
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is nonempty and the complementary basic solution is said to be infeasible.
Any index i satisfying q; < 0 is called an infeasibility and H is named the set
of infeasibilities. ,

Principal pivoting algorithms are procedures that use in each iteration

complementary basic infeasible solutions until finding a complementary basic
feasible solution (H = @). In each iteration a set H; €H is considered and the

sets F and T are modified according to the following rules

F =F - (FNH,) U (TNH,)

(11)

A principal pivoting algorithm is said to be single if the set H, has a single
element in each iteration. Otherwise it is called a block principal pivoting
algorithm, Next, we discuss the most important procedures of these two
types.

(i) Single Principal Pivoting Algorithms

The most important single principal pivoting algorithms are due to Murty

[33] and Keller [23] and their steps are presented below.

MURTY'S ALGORITHM
StepO-LetF=gand T={1,...,n).
Step 1 - Compute q by 9).Ifq 20, z= (qg, 0), w = (0, Q) is the unique
solution of the LCP. Otherwise let
s=min {ie FUT: q;<0}. - (12)

Step 2 - Set '
F={ F—{s} if se F

FU{s) if s¢ F
and T = {1,..., n} - F. Go to Step 1.

KELLER'S ALGORITHM
Step 0-LetF=@gand T = {1,..., n}.
Step 1 - Compute q. If 7 20, z = (q F»> 0), w = (0, qp) is the unique
solution of the LCP. Otherwise let
s=min (ieT: q;< 0} (13)
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Step 2 - Compute g and Mg, Let 6, = — :—qi and

Mg
A~ min { i jeF and m;g < 0}
-y

92 = RUT

+e if mjg 2 0 for all ie F
where r is the first index in case of ties.
Step 3 - Let 6 = min {6,, 0,).
(i) f0=0,,set F=FU(s}, T=T- (s} and go to Step 1.
(ii) If0 =06, setF=F- {r}, T=TU{r} and go to Step 4.
Step 4 - Compute qg and qg. Go to Step 2.

It follows from (8) that the quantity mg and the vector Mpg can be
computed as follows:

Solve MFF MFS = 'MFS
(14)

Compute Mgy = myg + Mg Mg

Hence a system with the matrix Mg has to be solved. However, no

system is required to find the vector q, since its components can be updated
according to the following formulas:

0=0,= 9 qr=0qp+6, Mg

dt =gt + 6, (Mrp Mg + M)
and
6-6,= F = qF + 6, Mg
Qs = Qg + 0, Mg
These formulas can be established by linear algebra manipulations.

Murty's method terminates in a finite number of iterations if M is a
(symmetric or unsymmetric) PD matrix [33]. The convergence of Keller's
method for symmetric and unsymmetric PD matrices has been established in
[23] and [4] respectively. If M is a symmetric PD matrix, then Keller's
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method reduces to the Fletcher and Jackson active-set algorithm [13] and is
also convergent if the criterion (13) is replaced by

Qg=min { q;:q;<0andie T} (15)

This criterion leads to a reduction on the number of iterations and is
usually recommendable to be incorporated in the algorithm [22]. In case of M
being unsymmetric cycling might occur if the criterion (15) is incorporated in
the algorithm. However, we have never faced any cycling in all the tests
performed so far.

Computational experience with both the algorithms for the, solution of
large-scale LCPs with a symmetric PD matrix indicates that Keller's method
is usually more efficient than Murty's method but the gap is small [22].
Furthermore the algorithms are quite sensitive to the number of initial
infeasibilities and the number of variables that are nonbasic initially and
become basic at the solution of the LCP [22]. The same conclusions can be
stated for the case of unsymmetric PD matrices.

Murty's algorithm may start with any set FC (1,..., n}. This is a great
advantage over Keller's method in which F has to be chosen in such a way
that the system

MppQp=-9qg -

has a nonnegative solution. This important feature of Murty's algorithm is
exploited in the design of a finite block principal pivoting algorithm, as is
explained later.

Another single principal pivoting algorithm has been developed by Graves
[18] and can be seen as a principal pivoting version of the famous Lemke's
method [27]. In this paper we do not concentrate on Graves' algorithm, since
this procedure is less efficient than the single principal pivoting techniques
mentioned before [22]. Furthermore the usual version of Lemke's method
requires in each iteration the solution of a system of order n [41], whence it is
not competitive with the single principal pivoting methods.
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(ii) Block Principal Pivoting Algorithms

As stated before, this type of algorithms allows in each iteration
modifications of more than one element in the sets F and T. To our
knowledge, the first technique of this type was developed by Kostreva [25].
The algorithm has the following features:

(i) F =g initally. - ‘

(ii) In each iteration the sets F and T are modified according to the
formulas (11) with H; = H, where H is the set of infeasibilities
given by (10).

It is, however, possible to show that cycling may occur in this algorithm
[32]. The algorithm can start with a set F # @ and there are at least two cases
in which the procedure terminates in a finite number of iterations:

(i) All the off-diagonal of Me PD are nonpositive, that is, M is a
nonsingular M-matrix (Me NSM), and F = @ initially [3].
(ii) M'eNSMandF = (1,..., n) initially.
Furthermore the algorithm is polynomial in both cases, since it requires at
most n iterations, _

Substantial computational experience with Kostreva's algorithm has
shown that cycling only occurs when the number of infeasibilities is small.
Since Murty's algorithm terminates in a finite number of iterations whatever
the initial set F is, then a good strategy is to use Kostreva's method until the
number of infeasibilities is smaller than or equal to a quantity atc and apply
Murty's method from then on. This hybrid procedure has been suggested by
us in [21] and has proven quite successful for solving large-scale strictly
convex LCPs [21]. The value atc = 3 is usually the most recommended
choice, but slightly larger values for atc (atc < 10, say) seem to mantain the
efficiency of the hybrid algorithm [21].

Despite sharing these good features, the algorithm remains heuristic and at
least in theory cycling méy occur. A simple way of overcoming this drawback
consists of introducing a quantity NMAXPYV, which represents the maximum
number of iterations that Kostreva's algorithm is allowed to be used. This
quantity is defined dynamically and is related with the reduction of the
number of infeasibilities. The steps of the algorithm are as follows:
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BLOCK PRINCIPAL PIVOTING ALGORITHM
Step 0 - Let atc and p be given positive integer numbers. Set k =1,
ninf = NMAXPV = +e0, F=@gand T = (1, ..., n}.

Step 1 - Compute q by (9) and let
H={i:q;<0)
IfH=0,z=Q,0),w=(0, Q) is the unique solution of the
LCP and stop. If
[HI £ atc or k > NMAXPV

where [HI is the number of elements of H, go to Step 3. Otherwise

go to Step 2.

Step 2 - Set
F=F-HNF) U HNT)
and T = {1,..., n} - F. If [Hl < ninf, set ninf = IHI and
NMAXPV =k + p.
Setk=k +1 and goto Step 1.
Step 3 - Set NMAXPV =k. Let
r = min {ie H)}
and set
{F-{r} ifreF
FU{r}ifr¢ F
and T= {1, ...,n} -F. Setk=k + 1 and go to Step 1.

As it can be seen from the description of these steps, the idea behind this
algorithm is to use Kostreva's method while the number of infeasibilities is
reducing. If the number of infeasibilities is smaller than or equal to atc, then
Kostreva's method is replaced by Murty's algorithm, which is used until the
solution of the LCP is found. If the number of infeasibilities is greater than
atc but has not reduced in an iteration to a value smaller than ninf, then (p - 1)
iterations of Kostreva's method are allowed. If during these iterations the
number of infeasibilities reduces to a value smaller than ninf, then the hybrid
procedure continues as before. Otherwise, after these (p - 1) iterations
Murty's method is used until the end. Computational experience with this
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hybrid algorithm indicates that p should be chosen quite small (p = 3 is
usually a good choice).

It is important to add that this block principal pivoting algorithm
terminates in exactly k iterations with the unique solution of the LCP. The
complexity of this algorithm is an open question. However, the famous
problems of Murty [31] and Fathi [12] are solved in a number of iterations of
order n for small values of p and atc. These are the problems that have been
designed to show that single pivoting algorithms may require an exponential
number of iterations to solve strictly convex LCPs.

3 - A Damped-Newton Algorithm
As stated in [29] the LCP is equivalent to the system of nonlinear

equations ,
H(z) =min (z,q+ Mz) =0 (16)

The function H : R" — R" is B-differentiable [19], whence it is possible
to develop a damped-Newton method in the spirit of [10] for the solution of
this system. This algorithm has been developed by Harker and Pang [19] and
incorporates an Armijo Criterion [2] for the function

§@ =5 H @ H () (17)

to assure global convergence. By exploiting the nice expression of the B-
derivative of H it is possible to present the steps of this damped-Newton
algorithm in the following form:

DAMPED-NEWTON ALGORITHM
Step 0 - Letk = l,zk=0, wk=qandce] O,%—[.

Step 1 - Let
F= {i:wli(<zli(}
Ei{i:wli(= lf}
and T = {1,..., n} - (FUE). Solve the Mixed LCP
0 =qp + Mgg Vg + Mg vg
Ug =qg + Mgg Vg + Mg vg
VEZO,UEZO,U£VE=O

(18)
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Let
uF=O,VT=0,uT=qT+MTFVF+MTEVE
Ifu>0and v 2 0, then (z = v, w = u) is the solution of the LCP.

Otherwise go to Step 2.
Step 2 - Let ZX*1 =y and A = 1. If
g < (1- ohy) gz (19)
set wktl =y, k=k+ 1 and go to Step 1. Otherwise let
0 if E =0
" | min{py.p,) if E=9
where
k k
. Zi—W; .
P, = min T 5 ZIEF,Vi<0
Zl—Wi-—Vl
k k
. Wi—Z4 .
py=miny == — V1€ T,ui< 0
Wi——Zi—ui

Step 3 - Find A, e ] p, 1[ by using the Armijo Criterion:
Let m=1,pe] 0, 1]
While g(z&*1) > (1- o)) g(z¥) do
| E
2K = (1-0) 2K+ N v
Set wk*1=(1-4) WX+ u,k=k+1 and go to Step 1.
It is important to add that if E = @ then the Mixed LCP (18) reduces to the

system of linear equations
Mg VF = Qg
In this case

Ut =qp + Mg Vg
Therefore, if E = @ the nonzero components of the vectors u and v are
computed in a way similar to the procedure for computing the vector q in the
principal pivoting methods. We note that if q # O then the set E is always
empty. In fact the quantity p is used exactly to mantain empty this set E [19].
Finally, it is interesting to notice that the damped-Newton method reduces to
Kostreva's algorithm if q # 0 and the condition (19) is satisfied for Mc=1

in each iteration k..
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The damped- Newton method possesses global convergence and local
quadratic convergence [19]. This is an advantage over the block plvotmg
- methods, where no convergence rate is known for the time being. However,
the algorithm depends on two parameters U and 6 (Harker and Pang have

recommended W = % and 0 = 0.2 to be chosen in practice). Another

drawback of this algorithm is the need of solving a Mixed LCP if the set E is
not empty. As stated before this is overcome if q # 0, but the authors do not
provide any explanation of how to deal with the case in which some of the
components of the vector q are equal to zero.

4. An Implementation for Large-Scale LCP

- It follows from the description of all the algorithms presented in this
paper that the major computational effort in each iteration relies on the
solution of a system of linear equations with a principal submatrix Mgy of M.

If M is a symmetric PD matrix then Mg, also satisfies this property for each
set F [32]. Hence the algorithms can be implemented for large-scale LCPs
with a symmetric PD matrix by exploiting the ideas presented in [11, 14] for
the solution of large systems of linear equations with these matrices. In this
type of implementation an Analyse Phase is performed, which consists of
finding an ordering for the rows and columns of M by using the minimum-
degree algorithm, This phase termmates by providing storage space for the
matrices L and D of the LDLT decomposition of the matrix Mgg. In each
iteration the matrices L and D are stored in a column oriented data structure in
which the diagonal elements of D are stored apart in a dense vector of order n.
If the number of modifications on the set F is small, then the LDLT
decomposition of the resulting matrix Mgr can be obtained from the LDLT
decomposition of the previous matrix Mg by an efficient procedure that
incorporates a sparse version [26] of Bennett's algorithm [1]. If the set F is
modified in t elements where t is much larger than one, then it 1s better to
compute the LDLT decomposition from stack instead of applying t times the
updating procedure. Another data structure is necessary to store the matrix M.
In order to facilitate the updating of the LDLT decomposition it is better to
store M columnwise as an unsymmetric matrix. We suggest [22] for a full
description of this implementation,
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Consider now the case in which M is an unsymmetric PD matrix. Then
diagonal pivoting is stable under one of the two following hypothesis:
(P): (i) Mis diagonally dominant [42]. |
(ii) The quantity cond(R) IISll is not large, where
R=g M+MD, s=5 (M-MD
and cond(R) represents the condition number of the matrix R
[17].
If one of these conditions is satisfied, then an implementation based on the
ideas stated before can be designed for the algorithms discussed in this paper.
As before, an Analyse Phase is first performed in which the minimum-degree
algorithm is applied to the structure of the matrix M + M. The LDU
decomposition of a matrix Mg, is used in each iteration for the solution of the
linear system with this matrix. This decomposition is stored in a data structure
containing a further real array in which all nonzero elements of the matrix U

are stored by rows. When the number of modifications of the set F is small,
the LDU decomposition of Mg can be updated from the LDU decomposition

of the previous matrix Mgy by a simple modification of the procedure for
symmetric matrices described in [22]. If the number of modifications is not
small, then it is better to compute the LDU decomposition from stack
according to the ordering achieved in the Analyse Phase. The matrix M is
stored as in the symmetric case.

If the property (P) does not hold or the structure of the matrix M is quite
unsymmetric, then this type of implementation is not recommendable. In this

case it is better not to use an updating scheme and solve the systems with
matrix Mgg by using a sparse solver for unsymmetric linear systems [11].

5. Computational Experience
In this section we present some computational experience with the
algorithms discussed in this paper for the solution of the following large-scale
problems: ‘ . '
TP1 — LCPs with a symmetric PD matrix taken from elastoplastic
analysis of structures [34].
TP2 — LCP with a symmetric PD matrix taken from a portfolio

selection model:[36].
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TP3, TP4, TP5 — LCPs with a symmeiric matrix that has been

| randomly generated according to the Stewart's technique
" described in [44].

TP6, TP7 — LCPs with a 5-point finite difference symmetric PD

matrix [35]. |

TP8, TP9, TP10, TP11 — LCPs with a pentadiagonal symmetric PD

matrix taken from [28].

TP12 — LCP in which M is an unsymmetric diagonally dominant PD
matrix with a symmetric pattern and has been randomly
generated according to the technique described in [39].

TP13 — LCP in which M is an unsymmetric PD matrix with a
symmetric pattern and has been randomly generated
according to the technique described in [39].

The orders of the matrices of these test problems are presented in tables 1
and 2. In all the test problems but TP11 the vector q has been generated by a
technique described in [40] that fixes the number of basic variables z; in the
unique solution of the LCP. The vector q of the test problem has been
randomly generated. In both cases all the components of the vector q are
nonzero.

The experiences have been performed on a CDC CYBER 180-830 of the
University of Porto, whose machine epsilon [10] is 104, The following
notations are used in the tables containing the results of the experiments:

n = dimension of the LCP = order of the matrix M.

neg = number of negative components of the vector q.

IFl = number of elements of the set F associated with the unique
solution of the LCP. ‘

TO = CPU time in seconds for finding an ordering for the rows and
columns of M (minimum-degree algorithm [14]).

TF = CPU time in seconds for the symbolic phase [14].

T = CPU time in seconds for the algorithms.

TT = Total CPU time in seconds (=TO+TF+T for the BLOCK and
KELLER algorithms). v

NO = number of operations (multiplications and divisions) multiplied
by 107,
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RES = Residual of the unique solution (z,w) of the LCP. It is given by

1/2
n n
IIW—(q+_ME)|I2=I: 2 (Wi-q;- 2 m;; Zj)zjl
i=1 =1

If o and B are positive integer numbers we use the quantity o—f3
to represent the residual o % 108,
NC = algorithm fails to converge after 5000 seconds of CPU time.

In Table 1 we present a comparison among the algoi‘ithms BLOCK
(p = atc = 3), KELLER, an Active-Set iterative method [35] (ASI), a
Projected-Gradient algorithm [9] (PGRAD) and a Projected S.O.R. method
[7, 8] (PSOR). The tolerances used in the stopping criteria of these iterative
methods have been 'chosen in order to achieve at least some accuracy in the
computed solution. These values are presented under the notation TOL and,
as before, we use the quantity P to represent the tolerance 10, The efficiency
of the algorithms PGRAD and PSOR depends on the values of the parameter
1 [9] and the relaxation parameter [7, 8] respectively. For each problem we
have tested different values for these two parameters. In Table 1 only the
results corresponding to the best performances of the algorithms are
presented. The corresponding values of these parameters are given under the
notation PAR. .

The computational results presented in Table 1 lead to the conclusion that
the BLOCK algorithm is usually the most efficient procedure to solve large-
scale strictly convex LCPs with sparse structure. The algorithm is quite
robust and does not seem to be much influenced by the number of negative
components of the vector q or by the number IFI of the basic variables z; in the
unique solution of the LCP. The residuals of the corﬁputed solutions are quite
good. This last property is shared by KELLER method. However, the
quantities neg and IFl mentioned above have a strong effect on the efficiency
of this last algorithm. This is not surprising, since the number of basic
variables z; is initially equal to zero and exactly one variable z; changes from
basic to nonbasic or vice-versa in each iteration. The iterative methods are
efficient for solving the test problem TP2, but in general perform much worse
in terms of the number of operations and CPU time than the BLOCK
algorithm. Furthermore the residuals of the computed solutions are in certain



46 J.J Jidice et al / Large-scale linear complementarity problems

cases quite large. The algorithms face a slow convergence for some of the test
problems. This is particularly evident for the LCPs with the pentadiagonal
matrix stated in [28], where the procedures are able to find a solution of the
LCP for small values of n (n < 100), with a large residual, but fail to
converge for larger values of n. It is important to add that the condition
number of this pentadiagonal matrix is an increasing function of its order n.
We also note that the BLOCK and KELLER algorithms find solutions for
these problems with small residuals.

In Table 2 the efficiencies of the algorithms BLOCK and damped-Newton
are compared. It is important to add that all the components of the vector q are
nonzero, whence exactly a linear system of equations has to be solved in each
iteration of the damped-Newton algorithm. The computational study shows
that the performarice of the two algorithms is qdite similar in terms of the
number of iterations and CPU time for almost all the test problems. However,
the algorithms do not solve the test problem TP11 efficiently. In the BLOCK
algorithm we have experienced an increase of the number of infeasibilities
quite often. Then the number of infeasibilities reduces to a lower level during
the (p-1) next block iterations that are performed after the increase of the
number of infeasibilities. This type of situation has occurred several times in
the second experiment with the test problem TP11. The damped-Newton
method performs much worse for this test problem. It seems that the reason
for this bad behavior is that the condition (19) never holds with A =1,
whence the quadratic convergence is not satisfied for this test problem. It is

. important to add that the reason for the bad behavior of the algorithm does not
rely on the generation of the vector. In fact the other problem in which q was
randomly generated was solved efficiently by the algorithms. Furthermore the
test problem TP9 was not solved so efficiently by the BLOCK method as
usual and the vector q was generated by the technique that fixes the solution
of the LCP beforehand.

As a final conclusion of this computational study we claim that the block
algorithm is highly recommendable to solve large-scale strictly convex LCPs.
The algorithm is in general superior over iterative methods, single principal
pivoting algorithms and active-set methods. A damped-Newton developed by
Harker and Pang [19] has shown to be usuvally comf)etitivé with the algorithm
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BLOCK. However, its performance may be much worse in some cases
where the matrix of the LCP is ill-conditioned. The efficiency of the BLOCK
algorithm also seems to be influenced by ill-conditioning, but this drawback
is not so relevant, Furthermore no difficulty arises in the algorithm BLOCK if
some of the components of the vector q are equal to zero. As stated before,
the damped-Newton becomes more involved in this case, since it is necessary
to solve a Mixed LCP in each iteration instead of a system of linear equations.
We are currently investigating how to deal with this case.

TP| n neg | IFl BLOCK | KELLER | ASI |PGRAD | PSOR

NI 6 242 1319 | 279 287
NO | 2.12 577 | 90.8 | 45.7 19.2
11484 151|242 | TT | 9.2 22.2 | 1382 | 65.2 40.8

RES| 1-11 2-11 1-6 8-4 1-3
TOL 6 3 4
PAR +oo 1.5

NI| 3 300 7 14 614
, NO| 087 | 644 | 1.69 | 2.08 | 443
2|600| 303|300 TT| 101 | 243 | 3.7 | 49 | 916
RES| 312 | 7-12 | 7-12 | 3-12 | 27

PAR o003 | 17
NL| 7 550 | 504 | 305 175
NO| 124 | 168 | 889 | 872 | 209
3 |1000]| 631|500| TT | 9.7 | 61.8 |140.8 | 1285 | 435

RES| 2-12 | 2-12 | 1-6 | 1-4 1-4
TOL 6 4 4
PAR +00 1.7

Table 1 — Comparison between direct and iterative methods for the solution of
strictly convex LCPs
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Cont.(Table 1)

TP| n neg | IF BLOCK | KELLER | ASI [PGRAD | PSOR

NI 7 832 319 255 139
NO | 0.62 162 | 70.3 | 55.2 | 153
4 11600| 947 | 800 | TT | 8.1 85.7 |125.7| 101.2 29.3
RES| 1-12 1-12 6-7 1-4 7-5

TOL 6 3 4
PAR +oo 1.3
NI 4 640 98 86 85

NO| 1.5 21.8 1109 | 11.3 6.53
6 11280( 326 640 | TT | 7.82 | 76.2 | 18.3 | 24.3 12.1
RES| 1-12 | 2-12 8-7 9-5 1-9

TOL 6 3 6
PAR +o0 1.7
NI 4 800 89 88 92

NO| 1.87 | 284 | 143 | 145 | 8383
7 |1600| 407 |800| TT | 9.85 | 111.6 | 239 | 312 | 163

RES| 2:12 | 2-12 87 | 95 1-9

TOL 6 3 6

PAR +o0 1.7
NI 8 50 79 67 1695

NO | 0.03 0.16 2.0 1.51 18.09
81100 | 23 | 50 | TT | 0.14 0.53 | 1.57 | 1.32 16.4
RES| 7-13 1-12 6-7 1-5 1-10

PAR 40 1.7
NI 67 829
NO | 10.5 | 149.2
9 |1500| 357 (750 | TT | 31.9 | 271.1 NC NC NC
RES| 4-12 5-12
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BLOCK DAMPED
NEWTON
NI T NI T
TP | n | TO | TF Ineg | {Fl

268|242 6 5.2 5 4.46

1 |484]3.83]0.41
2971386 5 8.41 5 8.57
314|300| 3 2.54 3 2.61

2 1600 7.2 |0.25
450 | 480 3 471 3 4.81
, 9211750 5 2.05 7 4.93

5 {1500]4.46]0.25
J1072}1200] 10 | 755 | 10 | 9.59
‘ 4718|500 6 1.21 5 1.24

10 [1000| - |o0.18
/ 503|800 5 1.6 5 1.87
‘ 14512071 19 | 177 | 21 3.6

11 |400| - |o.07
331|400] 223 | 46.7 | 696 | 432.6
591|500 2 0.33 2 0.39

12 |1000]1.77]0.19
843 (800| 2 0.54 2 0.61
876 | 750 2 0.46 2 0.54

13 [1500/1.750.17
1259|1200f 2 0.79 2 0.86

Table 2 — Comparison between BLOCK and Damped-Newton algorithms
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Abstract

In this paper a new algorithm for the determination of the set of nondominated paths in
an acyclic network is presented. The algorithm is based on a ranking path procedure and is
supported by the Principle of Optimality. Computational experience is reported showing
the superiority of this new approach over other alternative techniques, namely in terms of
execution time and memory requirements.

Resumo

Neste artigo apresenta-se um novo algoritmo para determinag@o do conjunto dos
caminhos ndo dominados em redes sem ciclos, O algoritmo é baseado num processo para a
determinagdo ordenada de caminhos e no Principio da Optimalidade, Descreve-se ainda a
experiéncia computacional realizada, que indica a superioridade deste novo processo sobre
outras técnicas alternativas, nomeadamente no que respeita ao tempo de execugdo e ao
espago de memdria necess4rio,

Keywords: Network, nondominated path, labelling algorithm, paths ranking,

1. Introduction

Let (N, -AA) be a directed network, where N = {1,...,n}is asetofn
elements called nodes and A = {ay,..., a5} a set of m arcs. Each arc ay is
defined by an ordered pair (i, j) of nodes, such that i # j- Throughout, the arc
ay is also denoted by (i, j).

Let x, he N be two nodes of (N, -A). A path from x to h in N,A)isa
sequence {X = vy, aj, Vy, a,..., V|_y, 8, v| = h}, of nodes and arcs, such
that vie N and a = (vi_y, v)eA. An elementary path is a path for which:

1. foralli, je {1,...,1- 1}, Vi #Vj, if i # j; i.e., all intermediate
nodes are distinct;
2. vie(x,h)forallie(1,..,1-1)}.
An elementary path from a node to itself is called a cycle.
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In this paper we assume that the network has no cycles, that is, (N, /A) is
an acyclic network. As a consequence, every path in (N, »4) is an elementary
path. '

We denote by Py, the set of all paths from x to h in (N, -4), Vx, he N.

Forr 2 2, let ’[cilj, cizj,. . cirj] be a real r-vector associated with each arc
@, j), for all (4, j)eA. Letc: Py = RF:p— cp) = [cl(p),..., c'(p)] =
= z c }j’ cees 2 c irj], be a function which assigns a real r-vector to each

(i.p)ep @Lpep
path pe Py, for any x, he N,

Lets, t €N be a specific pair of given nodes, such that s # t. We denote
Py asP. For this given pair of nodes, suppose we wish to find a path pe P,
which minimizes the r linear functions ck(p) simultaneously. This problem
has no solution in general, since there might exist some sort of conflict among
this functions. So our goal is to find a preferred path, which is optimal in
some sense. A good measure for optimality is the concept of nondominated
path, which is introduced below.

Definition 1.1 Let p;, pye P4, be two paths from x to h in (N, »4) for any
pair of nodes x and h. p; dominates p,, denoted by p; D p,, if and only
if cl(pl) < cl(pz),. v cr(pl) < c(p,), and the strict inequality holds for some
ke {1,..., r}.

Definition 1.2 p,e Py, is said to be a dominated path, if and only if
there exists a path p;e Py, such that p; D p,. '

Let fP)I()h be the set of dominated paths from x to h in (N, AA). A path p
from x to h is said to be a nondominated path in Py, if and only if pe P,?h. Let
Pﬁ, =Pyh ~ P,I()h denote the set of nondominated paths from x to h in
(N, 24). Notice that Pﬁl # @, whenever P, # 0, [5, 10, 11]. We also write
for simplicity PN and PP instead ng and TP?[ respectively.,

Whenever there is no path from s to t simultaneously minimizing the r
functions ck(p) in P, PN is a suitable set for our purposes. In fact, if p*e pN
then p* can be considered as an optimal path in the sense that every path p in
P for which a component ci(p) of ¢(p) has smaller value, then p* must satisfy
cj(p) > oj(p*) for some j # 1.

In this paper we present an algorithm for determining PN in acyclic
networks.
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2. Mathematical Background

In this section we recall some concepts that are used later.

Definition 2.1 Let x, ye R". x is a lexicographic positive vector, (x > 0,)
if and only if x; >0orx; = ... =x =0 and xp4y; > 0, for some
le (1,...,r — 1}. x is lexicographic greater than y, (x > y), if and only if
~ (x—y) is a lexicographic positive vector. A

Definition 2.2 Let pe PN be some nondominated path form s to t in
(N, A). The Principle of Optimality holds for p if and only if each
intermediate node i of p, the sub-path p; of p is a nondominated path from s
toiin (N, A).

Lemma 2.1 Let (N, »4) be an acyclic network. The Principle of Optimality
holds for any nondominated path in (N, 4).

Proof: Let pe PN be a nondominated path for a given pair of nodes s and t
in an acyclic network (IN,»4) such that its sub-path p,€ SP,]()h is dominated.
Thus there is some path qge Pg; such that ck(qsi) < ck(psi) holds for any
ke {1,..., r} and oi(qsi) < cj(psi) for some je {1,..., r}.

Let p = g Up;;. Since (N, 4) is an ‘acyclic network p is an elementary
path from s to t in (N, »4). Furthermore, ck(ﬁ) < ck(p) for any ke {1,..., r}
and oj(ii) < oi(p). So we may conclude that p D p, which is impossible. ¢

To show that the Principle of Optimality may not hold if some cycle
exists in (N, /), let us consider a nerwork (N, »4) in which N={1, 2, 3, 4)
and the set of arcs is defined as follows:

A A2 41231 62| 24 (3,4
cl 0 0 0 -1 0 0

if

cZ 0o | o -1 0 0 0

1

Only two (elementary) nondominated paths can be determined in (N, -4)
froms=1tot=4:p={1,(1,2), 2, (2,3), 3, (3,4),4} and q = {1, (1,3), 3,
(3.2), 2, (2,4), 4). However q = {1, (1,3), 3, (3,2), 2} dominates p = {1,

(1,2), 2}, since ¢(q) = [-1, 0] and ¢(B) = [0, 0].

A more general sufficient condition for the Principle of Optimality to hold

for general networks was established by one of the authors [10, 11].
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A class containing all the algorithms based on the Principle of Optimality
can be devised. Hansen [9] seems to be the first one to propose an algorithm
in this class. His algorithm is valid for the bicriterion case and it can be
viewed as a generalization of the classical shortest path algorithm of Dijkstra
[8]. In this algorithm one or more labels are assigned to each node, the set of
labels being split in two sub-sets: the set of the permanent labels and the set of
the temporary ones. Each label assigned to a node ie N, is a pair (z;, &;),
where ; = [c!(pg)), cz(psi)] is the value of some path pgePg; and &; is the
predecessor node of i in the path pg;. Permanent labels correspond to
nondominated paths, while each temporary label corresponds to some path
which can be dominated or not.

At each step of Hansen's algorithm the lexicographic smallest temporary
label, assigned to some node ie N, becomes permanent and is used to assign
a new temporary label to all nodes j for which (i, j) is an arc of (N, s4). After
this step, a nondominance test is used to remove all the temporary labels
corresponding to dominated paths.

A straightforward generalization of Hansen's algorithm for any number of
objectives was proposed by Martins [10]. More general conditions were also

established in order to ensure that the lexicographic smallest temporary label

corresponds to a nondominated path. In fact, while Hansen considers c}(j >0

for ke {1, 2}, Martins proved that we only need to assume that
1
ijo+-

[cilj, oo cig] > 0 or [ci..., cirj] =0 holds for any arc (i, j)e »4. In this paper
we take this assumption into account, m

Another class comprises the algorithms based on the ranking of a well
determined sub-set of paths. Climaco and Martins [5] were the first to
propose an algorithm in this class valid for the bicriterion case. A
generalization for any number of objectives was also proposed by the same
authors, [6]. The nondominance test is the main difference between the
bicriterion shortest path algorithm and its generalization for any nymber of
objectives. In fact, in the bicriterion case the value [cl(p), cz(p)] of each path
pe P is compared with the value of the nondominated path just determined.
Since paths are found in accordance to the nondecreasing lexicographic order

of their values, we may easily decide whether p is a nondominated path.
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When we are faced with three or more objectives, the nondominance test
for some path pe P requires the comparison of c(p) with the value of all the
nondominated paths ge PN for which c(q) < c(p) holds. This is not
necessary if a nondominated path qe PN had been previously found such that
c(p) = c(q) or q D p. In the first case pe PN while pe PNin the second case.

This fact can be easily illustrated with a small example. Let us assume that
three nondominated paths Py, P2 and p; were already determined such that
c(py) =[0,10,2] , c(p,) = [0,11,1] and c(p3) = [5,0,12). The determination
of a new path p is as follows: if ¢(p) = c(p;) then we conclude that p is also a
nondominated path; if ¢(p) > c(ps), for instance, c¢(p) = [1000,1000,2], the
comparison of ¢(p) with c(p,) is sufficient to show that p is a dominated path;
if for instance, c(p) = [1000,1000,0], we have to.compare it with the values
¢(py); ¢(p2) and c(ps) to conclude that p is also a nondominated path.

Clearly, the algorithm is valid since the lexicographic shortest path is
nondominated and paths are determined by nondecreasing lexicographic
order.

3. The Algorithm

The main idea associated with the algorithm is quite simple, since it uses a
ranking paths procedure as in Climaco and Martins' algorithms. However,
since the Principle of Optimality holds for acyclic networks, nondominated
paths cannot be made up of dominated sub-paths. So, the nondominance test
can be applied to each intermediate node of some candidate path to PN, to
determine whether it is dominated.

Roughly, let p = pi,Up,, be some candidate path and let us assume that x
is the first intermediate node of p for which pg,e Pg‘. Since pg,e Pg and pgy
is a sub-path of p, we may conclude that pe PN, The next step is an attempt to
find a nondominated path qg e Pg(, such that c(qgy) > c(psy). As (N, A) is
an acyclic network, qgUpy, is an elementary path candidate to PN,

Let Pgi = {p1, P2...., P} be the lexicographic ordered set of all the paths
from seN to some node ie N—(s}. That is, c(pp)<| c(pp1) OF c(Pn)=c(Ph+1)s
Vhe {1,..., K - 1}.

Definition 3.1 pp, 1€ P is the alternative to prh€ Py, for any
he {1,..., K- 1}.
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It follows from the definition 3.1 that there are no alternatives to PK. since
Pk is the lexicographic greatest path.
Definition 3.2 Let py, be a path of Pg;. A node xe py, is a used node if
there exists some path pye Pg; such that xe pi and k <h.

Let Pﬁ = {pl,..., p¥) be the lexicographic ordered set of nondominated
paths from se N to ie N — (s}, that is: ,

1. c(ph) g c(ph“) or c(ph)‘= c(ph'“), Vhe (1,...,k -1},
2. p is a dominated path, Vhe Pg; — Pg.

Definition 3.3 ph“e iPI;Ii is the nondominated alternative to phe Frsqi,
for any he {1,..., k- 1}.

We may conclude from definition 3.3 that there are no nondominated
alternatives to py. ‘

Because of its superiority, corroborated by the best known theoretical
complexity (0O (K x IAl) in a worst case analysis) and the reported
computational experiments, the ranking shortest paths algorithm of Azevedo
etal [2, 3, 4] is used to determine the alternative gy Of pgy. In order to clarify
the presentation of the new algorithm, this ranking shortest paths algorithm it
is briefly described below.

For any jeN, let PG = {ieN 1, j)e #A} be the set of predecessor nodes
of j and B(j) = ((i, j)e A | ie P(j)} be the set oﬁjiélcomjng arcs of node je N.

The first step of the algorithm is the determination of the lexicographic
shortest tree rooted at s, that is, a tree which is formed by a lexicographic
shortest path from s to i, for every node ie N — (s}. A labelling algorithm is
used in this first step. As a consequence, a label is assigned to each node x
being [nl,..., nr](x) its first field, which denotes the value of pgy, the path
from s to x in the tree; that is, k= ck(psx), for ke {1,..., r}. An important
characteristic of this ranking paths algorithm is the enlargement of the set of
nodes and the set of arcs, in such a way that the label of each node, with the
exception of node t, is associated with the lexicographic shortest path from s
to that node. Obviously, a correspondence is established so that the alternative
of py, can be determined as a lexicographic shortest path from s to some node
X', corresponding to x. Moreover, all the nodes that do not belong to the
initial network are alternatives for well determined nodes. From now on, we
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write alternative of some node with the meaning of an alternative to the
shortest path from s to that node.

Let p'e PN pe the i lexicographic shortest path from s to t in (N, s4),

and let us assume that p'= {s = S, @1, S1peeer Sk.1» ks Sk =), where

= (8.1, Sx)€7A. In the ranking paths algorithm, for each node in p', but

the initial node s, the alternative node is determined, labelled and added to the

network, An enlarged network is constructed such that each new node and its

label are associated with the alternative path from s to the corresponding node
in the original network.

Let s, # So(= 5) be some unused node of p'; that is, s, does not belong to

some previously determined path from s; to t, and the determination of at
least one path from sy to sy is possible. The alternative to Psgs, the sub-path

of p' from s, to sy, is determined according to the procedure use (s,).

procedure use (sy)

begin
if (s # 1)

then begin s, is an used node;
NeNU(s)
Ps, ¢ P(sy) — {sx1);
if (s,_; € N) then P(s) < P(s) U {s,',};
B(sy) < (i, ) lie P(s));
compute the label of s;

end

else begin P(t) « P(t) — {s4_;};
if (s,_1eN) then P(t) < P(t) U {s,",};
B(t) « {@, t) lieP(t)};
compute the label of t;
end
end
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A correspondence between arcs, that is, between the elements of B(sy)
and B(s), is established where c(i, ;) = c(i, s¢) holds for any (i, s;)e B(s;).
A lexicographic shortest label of s; is determined from the permanent label of
the nodes in P(s;), as follows:

(.., Wy = Li";{;i;‘ ([xl,..., # gy + [, 5,0, "0, sD1),

where lexmin stands for the lexicographic minimization. Since it is obtained
from permanent labels, [nl,. o nr](s’v() is the value of a lexicographic shortest
path from s to s;, whence it is permanent. Moreover, it is the value of the
(i+1)th lexicographic shortest path from s to sy.

More details concerning this ranking paths algorithm can be found in
[2,3, 4].

In the algorithm presented in this paper we write L.s.p. to mean the
lexicographic shortest path from s to t; l.s.t. is used to denote a
lexicographic shortest tree rooted at s. We also use stack to represent a given
set of nodes xe N such that the: existence of a nondominated alternative path
from s to x has to be considered; moreover first denotes the first unused node
in stack; by sy,; we mean the node following sy in stack. delete(x) is a
procedure used to delete x and B(x) from (N, A).

The stopping condition may be stated in such a way that the possible non
existence of nondominated paths is assured. Details about the value of the
paths bounds in the ranking paths algorithm may be found in [5, 6, 11].

We must remark that some dominated node x' may belong to (N, »4) until
a nondominated alternative of node x is determined. In this case, the node x'
is followed in stack by a nondominated node x whose nondominated
alternative we intend to find, since stack takes the value of {nodes of
dsx}U {nodes of pyy}. |



The algorithm:
begin
compute the L.s.t. and let p be the L.s.p.;

end

PN (p);

J.A.Azevedo et al | Multiobjective shortest 'pdth problem

all the nodes but s are unused;
while (a stop condition is not verified) do
begin stack « {nodes of p};

end

while (x = t) do
begin use (x);

(gx’ ¢ alternative to pgy;
Qsx ¢ correspondent of qgy in the original

network;
if Pxe PN
then begin sy ¢- node following x in
stack;
if (x = s;,)
then x ¢ Sy
else begin delete (x);
end
end
else begin stack « {nodes of qg,'}U
U {nodes of py,};
X ¢ first
end;

Pt ¢— alternative to p;
ﬁsi ¢ correspondent of py, in the original network;

then PN « PN U {Pst);
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In order to clarify the algorithm, a small example is depicted in Fig. 1.
The lexicographic shortest tree as well as the lexicographic shortest label of
each node are also shown in the figure,

Since p1 = {1, (1,3), 3, (3,5), 5} is the lexicographic shortest path from
s=1 tot =35, then stack = {1, 3, 5}, first = 3 and a nondominated
alternative to p;3 = {1, (1,3), 3} is determined (if such a}ltemative exists).
The node 3' and B(3') = {(2, 3')} are added (perhaps temporarily) to (N, -A)
and the lexicographic shortest label (3, 14, 2), of 3' is computed. Clearly,

(1,10,1)1 .

(1,10,2)3

0,1,2

Figure 1
_10.10,0

(2,10,10)2 {(4,11,10)4

3,6,0

(19,01

Figure 2
this label is associated to the path p;3 = {1, (1,2), 2, (2,3"), 3'} which
corresponds to the path py3 = {1, (1,2), 2, (2,3), 3) in the original network.
Since p;3 D py3, then ﬁBEPfg and P,3 is' not a subpath of some
nondominated path from s = 1 to t = 5. So, stack = {nodes of p;3}U{nodes
of p3s} = {1, 2, 3', 3, 5}, where node 3' (whose label corresponds to a
dominated path) is followed by the nondominated node 3. From this stack,
we conclude that there are no alternatives for both nodes 2 and 3'. As a
consequence, 3' and B(3') are removed from (N, »4). In fact, from the
algorithm, it would not be necessary to add node 3' and B(3") to (N, -A),
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once we concluded the non existence of any nondominated alternative for
node 3. Since 3' is followed by 3 in stack then first = 5 and x = 5 is the next
node to be used. So, as B(5) = {(2,5), (3,5), (4,5)}, (3,5)e p and no
alternative exists for node 3, the result of use(5) is the removal of (3,5) from
(N, A) and the updating of B(5) as B(5) = {(2,5), (4,5)} — (see Fig. 2).

The new label of node 5 is (4, 11, 4),, which is dominated by its
lexicographic shortest label. As a consequence, stack = {1, 2, 4, 5} and first
= 4 since it is the first unused node in stack for which a nondominated
alternative may exist. Node 4' is added to (N, A ) as well as
B(4') = {(3,4")} - (see Fig. 3).

Note that B(4') = B(4) - {(2, 4)}, since (2, 4)e p;4 and 2'¢ N.
(4, 15, 0)3 is the lexicographic shortest label of node 4' to which
corresponds the path py4 = {1, (1,3), 3, (3, 4, 4'}, that is, {1, (1,3), 3, (3,
4), 4} in the original network which is a nondominated path from s = 1 to 4.
So, node 5 is the next node in stack and B(5) is updated to {(4', 5), (2, 5)}
(see Fig. 4) and (6, 16, 10), is its new label.

4,11,104

(1,9,001 (4,15,0)3
Figure 3

(6,16,0)4"

(1,901 (4,15,0)3
Figure 4
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In the actual network p = {1, (1,3), 3, (3, 4", 4, (4, 5), 5} is the
lexicographic shortest path from s = 1 to t = 5. Its corresponding path in the
original network is p2 = {1, (1,3), 3, (3, 4), 4, (4, 5), 5} which is a
nondominated path. So, the algorithm follows with stack = (1, 3, 4', 5} and
node 5 as the first unused node in stack for which a nondominated alternative

may exist. Then B(5) is updated to B(5) = ((2, 5)} and (11, 20, 1), is the
lexicographic shortest label of node 5 in the current network which is a
dominated label. Since no more paths from node s = 1 to node t = 5 can be
found in the network, the algorithm stops.

Next we provide an example showing that the algorithm cannot be applied
to networks with cycles. Let us consider a network such that N=(1,2,3,4,5}

and

Afla2y ] 43 ] @4 ] 32 | 42 (4,5)
cl 1 2 1 2 1 1
c2 2 1 2 1 2 2

Clearly, stack = (1, 2, 4, 5} since p = {1, (1,2), 2, (2, 4), 4, (4, 5), 5} is
the Ls.p. for which we need to determine an alternative. So, the node 2' is
added to N together with arcs (3, 2') and (4, 2). Moreover, c312. = 0422. =2
and 0322. = 0412. = 1. Since (3, 6), is the shortest label of 2' to which
corresponds the path {1, (1,2), 2, (2, 4), 4, (4, 2), 2'} which is dominated
by the shortest path {1, (1, 2), 2) from 1 to 2, stack is updated to stack =
(1,2, 4,2,2,4,5). So, we would have to find again an alternative to node
2 and stack would be updated to stack = {1, 2, 4, 2", 2, 4, 2', 2, 4, 5}.
Clearly, the algorithm would not be finite, because an alternative to node 2
would have to be determined again and again. '

4. Computational Results

In a previous work [1] the superiority of the algorithm described in this
paper over the labelling algorithms of Hansen [9] and Martins [10] was
shown. In this section we compare the proposed algorithm with the procedure
of Climaco and Martins for the bicriterion case. The computational
experiments were carried out on a Dec System 3100 (14 Mips) computer with
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16Mb of RAM. Both algorithms were coded in FORTRAN 77 and the same
routines were used whenever possible. '
For a given number of nodes and arcs, an acyclic network is defined in
such a way that:
1. (i,i + 1)e A, for any node ieN — {IN ),
2.(4,j)e A =i<j.
For the first objective the arc distances cl were randomly generated in the

1]

range [1, 1000}. For the second objective, the arc dlstances clJ were also

randomly generated in the same range, unless clJ <250 or c 2 750. In the

first case c i€ {750, 1000] and in the second case c i< [1, 250] The uniform
probability dlstnbutlon was used to randomly generate all the required values.

For 1000, 3000 and 5000 nodes and derisities (ratio between the number
of arcs and the number of nodes) in the set {2, 2.5, 3, 3.5,..., 7.5, 8} one
hundred of instances were solved with both algorithms, considering each of
the objectives as the first one, that is, considering each objective as the basis
for the ranking procedure. So, each instance was solved four times.

All the networks were stored only in the reverse star form [7] since it is
more appropriate for the ranking procedure [4]. Furthermore, since (N, »4) is
acyclic, the determination of the shortest tree is also possible using this
reverse form representation and a straightforward labelling algorithm which
requires a single scanning over the set of arcs.

All tl;e problems were executed when the demand for the computer use
was comparable and no attempt was made to exploit the hardware
characteristics of the computer.

The computational results are shown in tables 1 and 2. Table 1 reports the
results when the first objective was used in the ranking procedure, while table
2 reports similar results for the second objective. In both tables we report the
number of nondominated paths that were determined by each one of the
algorithms, the mean time (in seconds) and the number of problems that were
solved completely, i.e., until the determination of all the nondominated paths.
The times were obtained with the internal clock of the computer, which is
accurate under two milliseconds. They include only the elapsed time after the
input of the problem and prior to the output of its solution.
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The presented results show the great superiority of the proposed algorithm
over the procedure of Climaco and Martins (CM) for the bicriterion case. In
fact, not only the proposed algorithm runs faster, but it also determines more
nondominated paths than the CM algorithm. In fact, for all the problems, the
proposed algorithm determined the entire set of nondominated paths while the
bicriterion algorithm of Climaco and Martins finishes many times before the
complete determination of the set of nondominated paths. This fact is a
consequence of the number of nodes and arcs added to theyoriginal network
by the use of the ranking path procedure. However, this procedure is used in
both algorithms. Moreover, the maximum number of nodes and the maximum
number of arcs are equal in both algorithms. So, as the number of nodes and
the number of arcs have a smaller increase with the proposed algorithm, it is
obvious that larger problems can be solved completely.

Another conclusion seems to be pertinent. It concerns the great stability of
this new algotrithm regarding the use of either the first or the second objective
in the ranking procedure. In fact, we do not observe great differences in the
results when the second objective replaces the first one in that procedure. This
is not the case of the bicriterion algorithm of Climaco and Martins for which
great differences are obtained either in the mean execution time or in the
number of problems that eventually terminated. A significative difference can
be seen even in the number of nondominated paths that were found for each
class of problems. These facts are graphically depicted in figures 6 and 7, for
a new set of computational tests where, for a given density, we report the
mean execution times (taken again over 100 problems) for networks with a
number of nodes in the set {2000, 3000, 4000,...,-9000, 10000}. We must
also remark that the results obtained with AM algorithm seems to be almost
linear. |

According to the computational experience, we may conclude that this
new algorithm is a better alternative for solving this particular class of
multicriterion shortest path problems.
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1000 Nodes 3000 Nodes 5000 Nodes
dfalg f D ]I D | D]I@ ]G
20 AM || 425 |1 0.16 | 100 || 405 [0.25 | 100 || 474 ] 0.35 | 100
CM || 425 10.79 | 100 | 398 | 1.63 | 94 || 468]1.39 | 98
2.5 [AM ]| 462 |1 0.21 | 100 || 614 |0.44 | 100 |{ 567 | 0.64 | 100
CM [ 447 |2.45) 90 || 574 16.49| 73 || 520 6.64 | 71
3.0 [AM ] 593 [0.30 [ 100 || 652 | 0.72 | 100 || 689 | 1.15 | 100
CM || 573 [5.58 ] 82 || 596 {9.35| 63 || 604 |11.47]| 52
3.5 [AM || 650 |10.43 ] 100 |[ 741 |1.62 | 1060 || 775]1.88 | 100
CM ]| 564 [9.84 ] 58 || 620 [13.06] 39 || 630 |12.26] 42
4.0 |AM [} 754 | 0.60 | 100 || 806 [ 1.57 | 100 || 842 [2.70 | 100
CM || 650 |10.96] 52 || 601 |14.22] 26 || 646 |13.43| 27
4.5 [AM || 748 |1 0.79 | 100 || 901 |[2.29 | 100 || 908 | 3.82 | 100
CM || 614 |11.76] 38 || 612 [14.83] 14 || 671 |13.78] 18
50 |AM || 859 | 1.03 | 100 || 978 {3.02 | 100 || 990 | 5.19 | 100
CM || 690 |11.38| 37 || 641 |14.62| 9 674 ]13.46] 14
5.5 |AM || 830 | 1.32 | 100 [} 1001 | 3.87 | 100 || 1039|7.01 | 100
CM || 629 |12.05] 25 || 613 [14.57] 6 693 114.06] 7
6.0 |AM |f 923 | 1.68 | 100 || 1078 | 5.06 | 100 [ 1116]8.55 | 100
CM || 680 [13.09] 15 || 597 {14.24] 4 709 {13.35] 7
6.5 |[AM || 972 |2.04 | 100 || 1084 | 6.41 | 100 || 1082]10.69] 100
CM || 705 [12.11] 15 || 558 |14.20] 1 633 (1297 7
7.0 |AM |1 1103 [ 2.54 | 100 || 1082 [ 7.94 | 100 |{ 1180{13.61] 100
CM || 697 [13.06] 6 || 523 [13.67| 2 654 113.30] 1
7.5 |AM (110311292 ]| 100 || 1114 | 9.48 | 100 || 1171}16.01] 100
CM || 676 [12.53] 9 || 522 |13.44] 1 643 112.67] 3
8.0 | AM 1 1026 | 3.44 | 100 || 1164 [11.45]| 100 |{ 1243}19.37] 100
CM || 684 {12.32] 7 532 |13.07] 1 648 [12.50] 3
d — density
alg. — algorithm
AM — proposed algorithm
CM — Climaco and Martins bicriterion algorithm
(1) — number of nondominated paths determined
(2) — mean time (seconds)
(3)__— number of problems that were completely solved

Table I - Computational results using the first objective in the ranking

procedure
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1000 Nodes 3000 Nodes 5000 Nodes
dJag ] MDA D[]S ND]EA |G
2.0 |AM || 425 | 0.17 | 100 || 405 | 0.24 | 100 || 474 | 0.35 | 100
CM || 423 | 1.20] 98 || 403 | 1.13 | 98 || 464]2.74 | 90
2.5 |AM || 462 | 0.21 | 100 |} 614 ] 0.42 ] 100 || 567 | 0.62 | 100
CM || 451 [2.41] 93 || 578 | 6.27 | 73 || 537 ]5.66 | 80
3.0 |AM || 593 10.30 | 100 || 652 [0.68 | 100 || 689 | 1.13 [ 100
CM || 558-[7.10| 72 || 596 |9.89 | 61 589 |11.75] 48
3.5 |AM || 650 | 0.42 | 100 || 741 | 1.09 | 100 || 775 1.81 ]| 100
CM || 587 [10.26] 58 || 641 |11.95| 45 || 633 13.23] 39
4.0 |AM || 754 10.59 | 100 || 806 | 1.60 | 100 || 842 ] 2.65 | 100
oM || 633 12.57| 42 || 654 |12.27] 37 || 636 |14.99] 23
45| AM || 748 {0.77°] 100 || 901 |2.31 | 100 || 908 | 3.74 | 100
CM || 588 [13.90] 26 || 668 {13.92] 19 || 613 ]14.52| 16
50| AM || 859 | 1.04 | 100 | 978 [3.11 | 100 || 990 | 5.14 | 100
CM || 624 [14.36] 17 || 682 |13.52] 20 || 615]15.20] 5
5.5 |AM || 830 {1.32 | 100 | 1001 | 3.88 | 100 || 1039] 6.91 | 100
CM || 581 [14.21] 16 || 674 |13.63] 10 || 552 114.79] 3
6.0 | AM || 923 | 1.70 | 100 || 1078 | 5.09 | 100 || 1116/ 8.61 | 100
- |CM || 581 [15.00} 3 | 712 }13.21] 10 || 585{13.90] 2.
6.5 [aM || 972 | 2.11 | 100 || 1084 } 6.36 | 100 |[ 1082]10.69 100
CM || 582 [14.31] 2 || 687 [12.16] 7 63311297 7
7.0 |AM {1103 |2.58 | 100 || 1082 ] 7.81 | 100 [/ 1180{13.78] 100
CM || 640 [13.67] 4 | 664 [12.96] 4 || 578 |13.89] 1
7.5 | AM || 1031 {3.01 | 100 || 1114 {9.27 | 100 || 1171]16.32} 100
CM || 582 [13.35] 4 || 660 |12.561 4 || 531]13.52] O
8.0 | AM |} 1026 | 3.62 | 100 || 1164 {11.07| 100 || 1243}19.54| 100
" |CM || 684 [13.10] 3 || 677 |12.46] -1 547 113.31] O
- d — density
alg. — algorithm
AM - proposed algorithm
CM — Climaco and Martins bicriterion algorithm
(1) — number of nondominated paths determined
(2) — mean time (seconds) , i
(3) — number of problems that were completely solved

Table II - Computational results using the second objective in the ranking

procedure
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B2 15t objective 2nd objective

nodes (thousands)

Figure 6: Results for AM algorithm. Network density =2

B 15t objective X 2nd objective

)
=

3 4 5 8 7 8 9 10
nodes (thousan ds)

Figure 7: Results for CM algorithm. Network density =2
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Abstract

A solution method is presented to solve-the m-traveling salesman problem (m-TSP)
based on a parallel tour building heuristic. Computational results concerning the behavior
of the proposed algorithm are discussed. The m-TSP set includes networks with different
geographical dispersion of the n-costumers, with 30 <n <120 and 1 <m < 10.

Resumo

Um algoritmo heurfstico para resolver o problema dos multiplos caixeiros viajantes (m-
PCV) € apresentado. Trata-se de um procedimento de construgfio paralela das m rotas que vusa
o critério de selegio e insergio mais econémica para a determinagio de um par cidade-rota. A
caracteristica gulosa do algoritmo € minimizada quando usamos procedimentos de trocas de
cidades entre rotas.

S&o apresentados resultados computacionais, obtidos em micro-computadores IBM-
PC/286, utilizando-se a linguagem PASCAL, em problemas com até 120 cidades ¢ 10
caixeiros.

Keywords: routing vehicles, parallel insertion, lravéling salesman,

1. Introdugio

Dentre os problemas tratados pela otimizagio combinatéria, o do caixeiro
viajante (PCV) é um dos mais estudados nas trés 1ltimas décadas. Consiste
em determinar uma rota de custo mfnimo para um caixeiro que deve visitar n
cidades e retornar ao seu domicflio! Admitindo-se que a rede seja
completamente conexa, o caixeiro ndo deve visitar qualquer dos seus clientes
mais do que uma vez. Este problema est4 associado a uma matriz de custo,
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C = (cjj), representando as distincias entre as cidades. Se ¢j; = cjj para todo
i, j, o problema ¢ simétrico. O PCV pode ser representado por um grafo onde
as cidades sdo representadas pelos nés e as ligagdes entre elas associadas aos
arcos. Muitos algoritmos exatos ¢ heurfsticos foram e t€m sido sugeridos para
resqlver este problema (veja Bodin et al [1]).

Uma das extensdes mais interessantes ¢ aplicdveis do PCV é o problema
dos miltiplos caixeiros viajantes (m-PCV): dado um conjunto de n cidades,
determinar o conjunto de m rotas para m caixeiros que partem e retornam a
um ponto comum, tal que cada cidade seja visitada por um dnico caixeiro,
uma tinica vez, a um minimo custo total de deslocamento.,

O m-PCV pertence 2 classe dos problemas NP-completos. Assim, o
desenvolvimento de algoritmos eficientes que construam rapidamente um
conjunto de rotas de custo o mais préximo possivel do minimo, para um
grande nimero de cidades, tem sido o objectivo de muitos pesquisadores.

Neste trabalho apresenta-se um algoritmo heuristico de construgdo pizalela
para o m-PCV que nio requer sua transformagdo num PCV, equivalente. Um
refinamento da primeira solugdo fornecida, baseada na trocé de cidades enire
rotas, € também apresentado e avaliado através de testes computacionais.

2. Algoritmo

O algoritmo proposto é constituido, apés a inicializagio das m rotas, de
trés estdgios: no primeiro, cada cidade néo visitada seleciona uma posigio
econémica para sua provivel inser¢do, em cada uma das m rotas. Em
seguida, cada uma destas cidades seleciona sua rota mais econémica. Por fim,
faz-se a insergdo escolhida e redefine-se a rota alterada.

Esgotados estes estdgios, propde-se um refinamento baseado em trocas de
cidades entre rotas ou ainda em trocas de sequéncia de cidades numa mesma
rota. ‘_

O critério de inser¢do econémica foi escolhido dentre outros, tendo em
vista constatages positivas de vérios autores, como Bodin et al [1] e Golden
e Stewart [2], sobre a eficiéncia deste procedimento apresentado
primeiramente por Rosenkrantz, Sterns e Lewis [3].
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Ser4 utilizada a seguinte notagio:
n: ndmero de cidades
m : nimero de caixeiros
Cjj ! distincia entre a cidade i e a cidade j j
Co; - distincia entre a garagem (cidade 0) e a cidade i
N : conjunto das cidades roteirizadas
U : conjunto das cidades nio roteirizadas
R; = (ig, iy, iy, ip.2, ip.1, Ip) : i-ésima rota
onde ig=i,=0 e ij com 1<j<p-1 €a j-ésima cidade darota i
R : conjunto das m rotas, ou seja, R = {Ry, Ry,..., Ry} ,
p(u, R;): posigio mais econémica para a insergéo da cidade ndo
roteirizada u na rota R, .
c(u, Ri)f custo total da rota R, se u for inserido em R, na posigio
p(u, R;)).
PASSO 1: ESCOLHA DAS CIDADES SEMENTES
A escolha das cidades sementes para a constru¢do paralela das m rotas,
influe consideravelmente no desempenho das heurfsticas de construgio -
Christofides et al [4]. Assim, adota-se o seguinte procedimento para a selegio
eficiente daquelas cidades:
Faga:
comego
k=1
Encontre ige U tal que Coiy = iréa[x] {coi)
Inicialize a rota k, ou seja, faga:
U=U- (i)
N=NuU (i)
Ry = (0, iy, 0)
fim

Enquanto 1<k <m faga:
comego
k=k+1
Encontre i*e U tal que
ciik-l + Ciik_2 +..0+ Cﬁ2 + Ciil

¢é méximo para i =1i*
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Inicialize a k-ésima rota, ou seja, faga:

comego
iy =1i*
U=U- (i)
N =NU (i)
Ry = (0, i, 0)
fim

fim
Este tipo de sele¢do automdtica de sementes, evita que todas as m rotas
sejam inicializadas por sementes préximas entre si, ou sejam evita que as
rotas sejam inicialmente conconcnﬁl‘;:s em um mesmo agrupamento de cidades.

PASSO 2: SELECAO DE POSIC@ES
Seja R o conjunto de todas as m rotas inicializadas no pastso 1. Para cada

ueU e R;eR determine a posigo p(u, R;) de inser¢do mais econémica de u

em R;, ou seja, que minimize a expressdo
Ciju * Cuij, ; ~ Ciigyy
onde ij € ij, sdo respectivamente a j-ésima e a (j+1)-ésima cidade da rota R;,
incluindo a garagem. Por questdes de conveniéncia p(u, R;) € tomado como o
valor j.
Neste passo foram selecionadas m [U| posigdes

PASSO 3: SELECAO DA MELHOR ROTA PARA CADA u DADO p(u, R)

Para cada ue U selecione Rj+€R tal que: '

Ciu ¥ Cuiy )~ Cijicy g
€ minima para R; = Ri+ ¢ j =p(u, Ry).

Assim, para cada ue U existe Rj+€ R tal que a inser¢do de u em Rjx na
posigdo p(u, Rj#) € a mais econémica. Neste passo forem selecionados IUI
pares cidade-rota. _

No préximo passo serd selecionado para inser¢do, um par cidade-rota

6timo entre os [Ul pares j4 selecionados.

PASSO 4: ESCOLHA "PONDERADA" DO MELHOR PAR CIDADE-ROTA
Agora, é necessério que seja selecionado u*e U e R’ikm cuja insergdo de u*
em R;;- ¢ mais econémica dentre aquelas obtidas no passo 3.
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Seja c(u, R;*) o custo da rota R;+ se u for inserido em R+ na posigio
x =p(u, Rj#), ou seja,
o(u, Riw) = Cigy + Cuiy, - Cigie,, *2 it 1if
onde R+ = (ig, i}, i3,..., ’p"‘l, ip) com i§ =i5 = 0.
Seja A = Citu + Cujt | - Citje
Selecione u eU e Riv tal que A/c(u, R;+) é minimo para u = u* e

R*_R*
PASSO 5: INSERCAO

Faga: '
comego
U=U - {u*)
N = NU{u*}

* s s ik T
R« = (ig, if,..., 1%, ¥, if 1,000 ip.1» ip)
*
onde x = p(u*, R;+)
. fim

PASSO 6: FINALIZACAO
Se U = @, entdo fim. Caso contrério volte ao passo 2.

3. Procedimentos para Melhoria da Solugio

O refinamento da solugdo obtida pelo algoritmo, consiste em remover
cidades das posigSes em que se encontram para outra posigdo que produza
redugdo do custo total. Os algoritmos de refinamento, em geral, partem de
uma solugdo factfvel e procuram melhorar sua qualidade através de uma
sequéncia de trocas de arcos ou cidades entre as rotas. Exemplos de
procedimentos deste tipo sdo descritos por Lim & Kernighan [5] e Waters
[6].

Neste trabalho foram implementados e testados dois procedlmcntos de
trocas simultineas de cidades:

PROCEDIMENTO 1: TROCA DE ROTAS ENTRE DUAS CIDADES
Sejam ;e N uma cidade localizada na rota R entre as cidades S;.1 €5¢41 €
k&N uma outra cidade localizada na rota Ry, entre as cidades kpy e kyyy. Se
Csetky ¥ Chisees ¥ Chpasy ¥ Cser < Csigs ¥ Ossipn ¥ gk + ik
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entdo troque s; por kj na rota Ry e kj por s; na rota Ry.
Se este procedimento for repetido para todos os pares de cidades entdo ele
reduz a intersegdo entre os setores de atendimento de cada uma das rotas.

PROCEDIMENTO 2: TROCA SIMPLES MAXIMA

Dada uma cidade si€ N localizada na rota Rg entre as cidades sy € si,q
determinar, quando possivel, uma cidade kje N localizada na rota Ry entre as
cidades k;_; e kj,, tal que a expressdo

Cspase + Csisin T Ok~ Okgs T sk T Cspasen

seja mdxima e estritamente positiva, ou seja, dada uma cidade determinar uma
posigio para troca onde a insergdo desta é a que provoca a melhor redugio do
custo total.

PASSO 7: REFINAMENT 0

Seja Cp = 2 C(R;) o custo total de rotemzagao C(R;) € o custo da rota i.
i=1

PR1: Para todo par i, je N com i # j aplique o procedxmento 1
PR2: Para todo ie N aplique o procedimento 2.

Repita os passos PR1 e PR2 até que o custo total nfo se altere entre uma
repeti¢iio e outra, isto é, até que nenhuma troca tenha sucesso.

O procedimento PR1 efectua n (n-1)/2 comparagdes. J4 o procedimento
PR2 efectua n (n+m-2) comparagdes.

Eilon et al [7] mostraram que um procedlmento r-Otimo necessita da
ordem de n! (r-1)! 27 /(r' (n-1)!) comparagdes, ou seja, parar = 2 tem-se
n(n—-1) comparagdes. Estes resultados mostram que tanto os procedimentos
PR1 e PR2 aqui propostos, bem como 6 procedimento 2-opt sdo equivalentes
em termos do niimero de comparagbes avaliadas.

4. Resultados Computacionais ‘

O algoritmo, programado na linguagem PASCAL, foi testado em um
microcomputador IBM—-PC/286 com "clock" de 20 MHz. Os problemas-
-testes foram representados pbr redes onde todas as ligagGes entre nds foram
consideradas. A distribui¢io espacial destes nds foi obtida por geragdo
aleatdria e as distdncias euclidianas entre eles foram calculadas, constituindo
as matrizes de custos dos problemas.
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O esforgo computacional para se construir solugdes aproximadas de
problemas m-PCV varia consideravelmente de um problema para outro.
Assim, foram considerados 48 grupos de problemas, variando-se o mimero
de cidades (n = 30, 40, 50, 60, 70, 80, 90, 100) e o nimero de caixeiros
(m=1, 2, 4, 6, 8, 10). Para cada um destes grupos (n, m) a heurfstica foi
aplicada sobre 5 redes diferentes, fornecendo os valores médios de tempos de
processamento em segundos apresentados na Tabela 1.

CIDADES CAIXEIROS
1 2 4 6 8 10
30 1.07 098 071 068 0.66 0.64
40 233 207 145 130 139 137
50 432 380 256 245 244 246
60 717 651 396 3.86 3.83 391

70 11.09 ~ 9.53 5.90 564 570 5.64

80 16.19 1472  8.67 784 172 7.69

90 22.56 21.26 11.67 10.54 1025 10.26

100 30.47 2772 1594 14.61 13.57 13.00
Tabela 1 (tempos em segundos de cpu)

A curva que melhor se ajusta 3 distribuigio destes tempos é:
t = o n2616 0327 com o =exp(-8.716)
indicando que a heuristica de construgiio paralela de rotas factiveis para m
caixeiros viajantes € proporcional ao cubo do niimero de cidades a serem
percorridas. Ressalta-se que estes resultados nada afirmam ou garantem
quanto a qualidade das solugdes obtidas. A auséncia na literatura de solugGes,
exatas ou néo, para diferentes problemas padrdes do tipo m-caixeiros torna
dificil esta avaliagio. Mais adiante esta questdo serd retomada.

Em recente trabalho de Husbam [8] apresentam-se tempos de
processamento para a obtengdo de solugSes exatas de problemas com até 16
cidades e 4 caixeiros, também utilizando-se microcomputadores IBM-PC
compativeis. A distribui¢io dos tempos por segundo obtidos pode ser
ajustada por:

t = exp(0.872n-0.944 m) com B = exp(-4.310)
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Fixando-se um tempo de processamento em 2 horas, verificar-se-ia que a
heuristica forneceria rotas fact{veis para um m-PCV de 1100 cidades e 10
caixeiros, ao passo que o método exato de Husbam [8] resolveria um
problema com 26 cidades e 10 caixeiros.

Para problemas deste porte, 0 método aqui sugerido oferece solugées em
menos de 1 segundo. Estes resultados confirmam o grande fosso existente
entre os métodos exatos e heurfsticos no tratamento de problemas reais
(Waters e Brodie [9]), via de regra com um ntimero de cidades que
compromete a aplicagio daqueles métodos.

Waters e Brodie [9] alertam ainda que os métodos exatos publicados tém
sido baseados em procedimentos complexos, na maioria das vezes aplicados a
problemas especiais com caracterfsticas desejéveis, ¢ fazendo uso de
possantes computadores. Sdo condigdes dificeis de serem preenchidas pela
grande maioria dos usudrios.

Em geral, quando um algoritmo heurfstico se comporta bem em termos de
tempo de processamento, compromete-se a minimizagio da distincia total
percorrida pelos caixeiros.

Os resultados a seguir avaliam o refinamento proposto, buscando também
uma comparagio com aqueles apresentados por Christofides et al [4]. A
comparagdo ¢ aproximada uma vez que os problemas de Christofides et al [4]
levam em conta restri¢des temporais e de carga, ou seja, o m-PCV pode ser
obtido como relaxagdo do problema por eles tratado. Ndo hd aqui
comparagdes com os tempos de processamento, uma vez que Christofides et
al [4] utilizaram computador de grande porte. Para cada exemplo daquela
referéncia, foram considerados o melhor custo apresentado e o respectivo
nimero de rotas (m), alocados resbcctivaincnte nas colunas (A) e (B) da
Tabela 2. Ainda nesta tabela os resultados obtidos pela heuristica aqui
proposta sio: (C)-custo sem o refinamento; (D)-custo com o refinamento; (E)-
tempo de processamento sem o refinamento e (F)-tempo de processamento do
refinamento, em segundos. Na Tabela 3 sdo apresentadas relagdes entre os
resultados obtidos. Nota-se que ap6s o refinamento a heurfstica proposta
apresenta solugdes com custos aderentes aos de Christofides et al [4]. Por
outro lado, os tempos de processamento gastos na fase do refinamento nio
chegam a valores absolutos insuportdveis (pouco mais de 3 minutos para 120
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cidades) apesar de, em termos relativos serem bem maiores que os tempos

gastos na fase sem refinamento.

n A B C D E - F
50 | 532 5 560 527 2.3 10.9
75 871 11 972 783 6.5 32.8

100 851 8 915 837 11.2 67.6
120 | 1066 7 1128 1092 20.3 193.3
100*] 816 10 1035 821 11.9 123.9

Tabela 2
n D/A D/C F/E
50 0.99 094 474
75 0.90 0.81 5.05
100 0.98 0.91 6.04
120 1.02 0.97 9.52
100* 1.01 0.79 10.41
Tabela 3 |

(*) rede com cidades agrupadas

5. Conclusdes

O algoritmo apresentado‘ ¢ de natureza heuristica e extremamente répido na
construgdo de uma boa solugio factivel para o m-PCV. Esta solugfo pode se
tornar a unica solugdo vidvel quando ndo se dispde de recursos
computacionais para se resolver um problema de grande porte em curto
espago de tempo. Isto se deve ao fato de que a construgéo das m rotas se
realiza em tempo proporcional ao cubo do nimero de cidades, € por ndo
precisar transformar o problema origihal num equivalente caixeiro viajante
simples.

A desvantagem deste algoritmo é que resolve os problemas com o nimero
m de caixeiros tomado fixo, ao contrério de outros procedimentos. Veja por
exemplo, Laporte e Nobert [10]. '

O algoritmo apresentado bem como seu refinamento podem ser estendidos
facilmente para o uso em diferentes problemas de roteirizagio de veiculos
onde estdo presentes restri¢des complicantes como: demanda nos pontos de
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visita; jornada de trabalho de uma tripulagfio; veiculos capacitados e janelas de

tempo.

A sua aderéncia 3s solugdes apresentadas em Christofides et al [4], bem

como sua versatilidade computacional devido 3 sua implementagio em micros
IBM-PC, sdo atributos marcantes da heuristica proposta no tratamento de
redes de até duas centenas de cidades, aplicando-se os dois refinamentos
descritos. A obtengdo de uma solugio factivel é bastante rdpida mesmo para

redes maiores.
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DISTRIBUICAO DE EMBARCACOES SALVA-
VIDAS POR ESTACOES DE SOCORROS A
NAUFRAGOS
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Abstract ,

Portugal is a country with a wide Atlantic coast. Instituto de Socorros a Ndufragos, the
national lifeboat institute, has several places (called estagées) along the portuguese coast,
whose needs differ from place to place. Portugal has also a limited number of lifeboats with
different characteristics, Those lifeboats are to be assigned among esta¢des. A resources
allocation problem emerges. One way of solving it is through multicriteria analysis. An
application of Saaty's method is presented, and four proposals of lifeboats allocation are
introduced. Those proposals contemplate four possible scenarios,

Resumo ,

Portugal dispSe de uma extensa costa maritima. Para precaver e socorrer possiveis
acidentes maritimos, o Instituto de Socorros a NAufragos possui vérios locais (estagBes) ao
longo da costa portuguesa. A estas estagfes deve ser afectado um nimero limitado de
embarcagdes. As estagdes diferem nas suas necessidades e as embarcagdes nas caracteristicas

 operacionais. Existe assim um problema de afectagfio de recursos susceptivel de ser resolvido
por andlise multicritério. Aplicando-se um método compensatério com ponderagdo Proposto
por Saaty, foram elaboradas quatro propostas alternativas de afectagio, correspondendo a
outros tantos cendrios base.

Keywords: Multicriteria analysis, Resources allocation.
1. Introducéio ,

E bem sabido que Portugal dispde de uma extensa costa marftima. Para
precaver e socorrer possiveis acidentes maritimos existe, naturalmente, uma
entidade especifica — o Instituto de Socorros a Naifragos (ISN). O ISN
possui vdrios locais (estagGes) ao longo da costa portuguesa que constituem a
base da sua faceta operacional de prestagdo de socorro sempre que lhe seja
solicitada a actuag@o. Possui, por outro lado, um nimero limitado de
embarcagdes salva-vidas, ndo sendo porém todas iguais em termos de
caracteristicas relevantes. Existe o problema de assegurar que a distribuigio
das diferentes embarcagGes € a que melhor satisfaz as necessidades globais.
Trata-se de um problema de natureza essencialmente econémica: afectar
recursos escassos € susceptiveis de usos alternativos de modo a satisfazer de
uma forma 6ptima um conjunto de necessidades igualmente importantes.

A atribuigdo de um salva-vidas a uma estagfo particular do ISN ndo
constitui um problema trivial, pois os diferentes salva-vidas tém diferentes
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caracteristicas e as vdrias estagdes de socorros a nadfragos diferentes
necessidades e importincia, Mais, as diferentes necessidades ndo sdo
comensurdveis numa mesma escala. A resolugdo deste problema é no entanto
possivel de ser obtida através da andlise multicritério, que desenvolve técnicas
especificas de avaliago relativa das diferentes necessidades (identificadas
com critérios de decisfo). Esta avaliagio vai permitir a sua comparagdo de
modo a alcangar uma distribui¢do de embarcagdes salva-vidas por estagdes
ISN que seja 6ptima, dadas as necessidades e limitagdes de recursos
existentes.

Assim, na segunda secgio sdo apresentados os fundamentos tedricos do
método de andlise multicritério utilizado. Na terceira secgdo € feita a aplicagio
do método 2 situagdio em causa. Em seguida, na quarta sec¢do, sdo
apresentados os resultados. Finalmente, na quinta secgfo, € elaborada a
conclusdo.

2. Fundamentos Tedricos

O problema existente é fundamentalmente um problema de andlise
multicritério. Por andlise multicritério entende-se uma situagio em que se
dispde de um conjunto discreto de alternativas que sdo avaliadas sob diversos
critérios. Estes critérios (focando atributos ou caracteristicas das alternativas)
sdo, em geral, conflituantes. Por outro lado, diferentes critérios nem sempre
sdo comensurdveis na mesma escala,

Embora existam diferentes métodos de resolugio deste tipo de problemas
[1] adoptou-se, neste caso concreto, um método compensatério com
ponderagio. Este tipo de método, permite, como o préprio nome indica,
compensagdes entre critérios: alteragSes num atributo podem ser compensadas
por alteragGes opostas em quaisquer outros atributos.

Com os métodos compensatérios € usualmente atribufdo um inico

. niimero a cada caracteriza¢@io multidimensional representando uma alternativa.
Nos métodos compensatérios com ponderaqﬁb levanta-se naturalmente a
questdo de como calcular os ponderadores, pois € necessdrio determinar os
Pesos wy,..., Wy, a associar a cada critério cy,..., Cp.

Na presente aplicagdo seguiu-se o método dos valores préprios, proposto
por Saaty, pois requere apenas informagio acerca da importincia relativa de
cada atributo. Neste método, o decisor € instado a fazer uma comparagio
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entre pares de critérios, segundo uma escala que representa a intensidade
(importincia) da comparagio relativa dos critérios.
Essa escala € dada, para a comparagio entre o critério ¢; e o critério cjs

por:
Intensidade/ ﬁ-gﬁ}ﬁqﬁo Explicitagio I
/Importfncia .
1 Igual Importancia :
3 * Dominéncia Fraca O 12 critério é ligeiramente!
mais importante que o 22
5 Dominéncia Forie O 1%critério € mais
importante que o 2°
| 7 Domindncia Iirefutdvel O 1%critério é
significativamente
superior ao 2°
9 Dominéncia Absoluta O 12 critério domina
absolutamente o 22

Os valores pares (2, 4, 6, 8) sdo atribuidos aos casos intermédios (por
exemplo, quando ndo se decide entre 1 e 3, escolhe-se 2), e os valores

inversos ( T ; , }7 » T ) correspondem 2 inversdo da regra de dominancia

entre o primeiro e o segundo critérios (por exemplo, quando se escolhe é , 0
segundo critério domina absolutamente o primeiro). O mesmo raciocinio é
aplicdvel aos inversos dos nimeros pares.

A justificagdo desta escala baseia-se no facto de a experiéncia ter
confirmado que € razodvel uma escala de nove unidades e que reflecte o grau
de descriminagio possuido pelos individuos quanto 2 intensidade das relacdes
entre elcxﬁentos [3, pag. 77].

Torna-se agora necessdrio concretizar esta escala de comparagdo de
critérios em ponderadores. Para tal, defina-se a matriz B, de elemento
genérico bjj, que € o julgamento relativo dos dois critérios i ¢ j. O nimero de

julgamentos é (n2— ) » para o caso de um niimero n de critérios.
Esta avahagao relativa deve estar relacionada com os ponderadores Wj € Wj
do seguinte modo:
b=
by = o

Pressupondo que aValiaqﬁes satisfazem esta relagdo (1) & possfvel

estabelecer a seguinte identidade:
Bw=nw , . )

B-nDw=0 (2a)

ou
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onde I € a matriz identidade de ordem apropriéda. Deste modo o vector dos
ponderadores, w, corresponde ao valor préprio n.

Devido 2 propriedade de consisténcia (1), o sistema homogéneo de
equagdes lineares (2a) tem apenas solugdes triviais. Em geral, no entanto, os
valores precisos de % sdo desconhecidos e t€m que ser estimados, € como

tal a relag@o (1) ndo serd completamente satisfeita. Sabe-se, por outro lado,
que pequenas perturbagdes nos coeficientes implicam pequenas perturbagdes
nos valores préprios.

Definindo B' como a matriz das avaliagGes estimada, e sendo w' o vector
de ponderadores associado a B', entio B'W' = A, W', onde Ay,, é maior
valor préprio de B'. O vector w' pode ser obtido resolvendo o sistema

B~ Apax D W' =0
juntamehte com a restri¢ao -

zwi=1
1

Note-se que, por construgdo, o sistera tem determinante nulo, pois Ay
¢ a maior solugio de IB'— A Il = 0, pelo que as n equagdes sdo linearmente
dependentes. Deixando cair uma delas e adicionando a restri¢iio de a soma
dos ponderadores ter que ser unit4ria, obtém-se um sistema de n equagdes a n
inc6gnitas susceptivel de ser resolvido [1, pég, 43-44).

Devido a possibilidade de ocorréncia de incoeréncia nas comparagdes
humanas € importante ter uma medida da inconsisténcia, definida em Saaty

(1986) como:
Amax—1
Cl= —5—

Por simulagio foi determinado o valor do indicador de consisténcia no
caso de as avaliagGes de critérios serem feitas de um modo puramente
aleatério (CI}), que pode servir de termo de comparagio. Com essa base
determinou-se o seu valor médio e definiu-se .

Rc= L
CI;
em que este quociente RC € considerado por Saaty como um ricio de
consisténcia, propondo este autor a reformulagdo das comparagdes feitas
quando RC exceder 10%.
O método compensatério com ponderagio utilizado foi 0 método analitico

hierdrquico, em que os ponderadores foram obtidos do modo acima indicado.
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Este método baseia-se no facto de os objectivos ndo serem todos do mesmo
nfvel. Vio-se compor pésos, por meio do método de Saaty, para diferentes
nfveis, criando-se assim uma hierarquia. Estando calculados os pesos,
comparam-se seguidamente as alternativas com base nos objectivos do nivel
mais baixo [1, pdg. 106-114], [3, pdg. 73-74].

3. Aplicacfio ao Problema em Causa

No caso presente, considera-se o problema de afectagio de diversas
embarcag6es salva-vidas por diferentes estagbes do Instituto de Socorros a
Naiifragos (ISN), ao longo da costa portuguesa, continental e ilhas. Cada
estagdo tem as suas especificidades e importancia relativa e cada barco as suas
caracteristicas, que serdo mais ou menos importantes consoante cada estagio
de socorros a natfragos.

Assim, os critérios de primeiro nivel serio as préprias estagbes de
SOCOITOS a naﬁfragos, em que se ird obter entfo a contribui¢do de cada uma
delas para o objectivo global, a melhor distribui¢do possivel das embarcagdes
por estagoes. Dentro de cada estagdo sdo ainda considerados quatro critérios
de avaliagfio de cada embarcagio.

As estagdes de socorros a naidfragos consideradas sdo, num primeiro
caso, vinte seis (ver Quadro 1 para uma apresentagdo exaustiva das estagdes),
¢ num segundo caso, trinta (acrescentando as anteriores vinte e seis estagdes
as novas estagdes possiveis de serem criadas, de Funchal, Velas, Albufeira e
Porto Santo). As estagdes salva-vidas consideradas operacionalmente neste
estudo ndo constituem todas as estagdes ao dispor do ISN. Existem ainda as
estagdes salva-vidas de Apilia, S.Martinho do Porto, Vila Nova de Mil
Fontes e Alhandra. Estas estagdes ndo foram incorporadas na andlise devido
as suas caracteristicas particulares.

A estagio de Apiilia serve uma zona de diminuta densidade pesqueira e
estd situada em costa de mar aberto, tendo-lhe sido atribufda uma embarcagio
alternativa a salva-vidas, que se considera suficiente para suprir as
necessidades da estagdo.

A estagdo de Alhandra ¢ uma estacio fluvial situada no Rio Tejo, ndo
fazendo sentido consider4-la para a atribuigdo de salva-vidas oceanicos. Esta
estagdo possui o tinico salva-vidas fluvial possuido pelo ISN.

As estagdes de S.Martinho do Porto e de Vila Nova de Mil Fontes nio
foram incorporadas na andlise, pois o estado das respectivas barras néio
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permite a operacionalidade dos salva-vidas oceanicos (o agoreamento que se
verifica em ambos os portos limita bastante a capacidade de saida para o mar
das embarcagdes). Adicionalmente, estes pontos perderam importincia com a
criagio dos portos da Nazaré e Sines, respectivamente, para onde se
deslocaram as frotas pesqueiras que antes existiam nos portos de S.Martinho
do Porto e de Vila Nova de Mil Fontes. Assim, também aqui a
impossibilidade de actuagdo, em termos gerais dos salva-vidas determinou a
atribuigdo de outro tipo de embarcagdes (bote) substituta para satisfagdo das
necessidades sentidas — fundamentalmente a vigilancia das praias.

Estas quatro estagbes constituem, pois, um problema de afectagio de
recursos distinto do analisado no presente trabalho.

Os critérios associados as caracteristicas de cada embarcagdo em cada uma
das estagGes sdo a velocidade (avaliado em nés), a capacidade para aguentar
mar (avaliada em altura da vaga que a embarcagdo aguenta), a 4rea que pode
cobrir (em milhas maritimas de raio de acgdio) e a posse de meios de
navegacio — radar (associando o valor um com a existiencia de radar na
embarcagdo e o valor zero com a sua auséncia). A distingdo crucial a fazer
entre as diferentes classes de embarcagdes no que toca a meios de navegagio
respeita 4 posse, ou néo, de radar, uma vez que todas as embarcagSes tém
actualmente agulha magnética e sonda. Por outro lado, o elemento
fundamental que permite & embarcagio operaf mais ao largo € precisamente o
radar. ‘ .

O primeiro passo a ser realizado é a determinago dos ponderadores de
cada estagdo. Estes foram calculados utilizando o método de Saaty exposto e
por intermédio do software "Expert Choice". Houve, no entanto, uma
dificuldade operacional, o referido software nio suporta mais do que
comparagGes entre sete critérios distintos, torneada do seguinte modo:

classificaram-se as 26 (30) estagdes segundo sete categorias, e
agrupando as estagGes de igual importincia numa mesma categoria.
Considerando cada categoria como um critério, foi possivel determinar
os ponderadores associados a cada categoria. Como dentro de cada
categoria todas as estagdes t8m a mesma importincia, para obter os
ponderadores globais é necess4rio normalizar, dividindo o ponderador
de cada estagfio pela soma de todos os ponderadores.,




86 P.P.Barros | Distribui¢do de embarcagées salva-vidas

O célculo dos pesos de cada critério em cada estagdo de socorros a
naiifragos foi realizada, sem qualquer pfobcma, através do software "Expert
-Choice". Os resultados das comparagGes realizadas, isto €, os pesos
normalizados de cada estagdo e os pesos de cada critério associado a cada
estagdo individual sdo apresentados no quadro 2. ‘

Com os valores constantes do quadro 1 as caracteristicas relevantes de

" cada embarcagfo, ou, mais tecnicamente, a ordenagéo segundo cada critério, e
com os ponderadores do primeiro e segundo niveis constantes do quadro 2, é

~ possivel construir as contribuigGes marginais (quadro 3) de cada embarcagio
em cada estagfo para o objectivo final da melhor afectagfio de embarcagtes

por localizagGes.
Quadro 1
Classe da Velocidade Capacidade  Areaque Posse de meios
Embarcacio para aguentar pode cobrir de navegagio
(n6s)  (vagas—m) (milhas)  (sim-1; ndo-0)
1.Wilheim-Hubotter 15 8 20 1
2.D.Carlos I 7 5 10 0
3.Vila Chd 6 3 5 0
4,0akley 9 7 20 1
~ 5.Waveney 15 10 20 1
6.Liverpool 7 7 20 1
7.Atlantic 21-a) 30 1 20 0
b)) 6 4 20 0

NOTA: A embarcagdo da classe Atlantic 21 tem um comportamento bastante diferente
consoante as condi¢Bes em que se desenrola a sua miss3o. As caracteristicas apresentadas sob
a denominagfio a) respeitam as condiges Gptimas de actuagfio que serdo susceptiveis de
ocorre nas seguintes estagdes, devido ao tipo de miss3o normalmente nelas envolvido: Vila
do Conde, Foz do Douro, Sagres, Ferragudo, Santa Maria-Olhfio, Fuzeta, Tavira e Vila Real
de Santo Antdnio, As restantes estagdes implicam, na grande maioria dos casos, condigbes
de actmag@o mais adversas, reflectidas pela avaliagio b).

O ISN tem actualmente em operag¢o salva-vidas ocelnicos das classes Waveney (2),
Wilheim-Hubotter (6), D.Carlos I (6), Oakley (6), Liverpool(1) e Vila Chd (3), estando
prestes a ser adquiridos seis salva-vidas da classe Atlantic 21. :
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Quadro 2
Esta¢bes Pesos  Pesos Crit. 1 Crit. 2 Crit. 3 Crit. 4 |
Salva-Vidas (26 est.) (30 est.)
1.Viana do Castelo  0.04685 0.0380 0.152 0.390 0.068 0.390
2.Esposende . 0.00935 0.0087 0.375 0.375 0.125 0.125
3P6voade Varzim  0.05054 0.0554 0.250 0.250 0250 0.250 |
4ViladoConde  0.01353 0.0126 0.604 0.201 .0.121 0.074
5vilaChda = 0.00935 0.0087 0.351 0.351 0.189 0.109
6.Angeiras 0.00935 0.0087 0.351 0.351 0.189 0.109
7.Leixdes 0.08834 0.0822 0250 0.250 0.250 0.250
8FozdoDouro  0.00935 0.0087 0.604 0.201 0.1210.074
9.Aguda 0.00935 0.0087 0.351 0.351 0.189 0.109
10.Aveiro 0.05954 0.0554 0.250 0.250 0.250 0.250
11.FigueiradaFoz 0.05954 0.0554 0.250 0.250 0.250 0.250
12.Nazaré 0.05954 0.0554 0.250 0.250 0.250 0.250 “
13.Peniche 0.05954 0.0554 0.250 0.250 0.250 0.250
14.Ericeira 0.00689 0.0064 0.200 0.400 0.200 0.200
I5.Pagode Arcos  0.08834 0.0822 0.250 0250 0250 0.250 |
16.Sesimbra 0.05954 0.0554 0.250 -0.250 0.250 0.250
17.Sines 0.02780 0.0259 0.107 0.282 0.255 0.376
18 Ferragudo 0.02780 0.0259 0.143 0.J86 0.286 0.286
19.Sagres 0.02780 0.0259 0.144 0.392 0.144 0.320 ||
20.Sta.Maria-Olhdo 0.04085 0.0380 0.223 0.110 0.250 0.418
21.Fuzeta 0.00935 0.0087 0.250 0.250 0.250 0.250
22.Tavira 0.01353 0.0126 -0.250. 0.250 0.250 0.250
23.V.Real S.Anténio 0.04085 0.0380 0.200 0.200 0.200 0.400 "
24.PontaDelgada  0.04085 0.0380 0.250 0.250 0.250 0.250
25.Angra Herofsmo  0.04085 0.0380 0.250 0.250 0.250 0.250
26.Horta 0.08834 0.0822 0.250 0.250 0.250 0.250
27 Funchal 0.0380 0.286 0.143 0.286 0.286
28.Velas » 0.0064 0.201 0.604 0.121 0.074
29.Albufeira - 0.0126 0.167 0.500 0.167 0.167
30.Porto Santo 0.0126 0.250 0.250 0.250 0.250 ||

Crit. 1 - Velocidade; Crit. 2 — Capacidade para aguentar mar
Crit. 3 — Area que pode cobrir; Crit. 4 — Posse de meios de navegagio
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Quadro 3.A

Classes 1 2 3 4 5 6 7 l
Estacbes (30)
1 0.272 0.140 0.092 0.222 0.801 0.211 0.146
2 0.098 0.050 0.035 0.075 0.104 0.069 0.054
3 0.609 0.305 0.194 0.512 0.637 0.485 0.416
4 0.166 0.081 0.061 0.118 0.171 0.102 0.261
5 0.104 0.053 0,036 0.083 0.110 0.077 0.063
6 0.104 0.053 0.036 0.083 0.110 0.077 0.063 .1
7 0.904 0.452 0288 0.076 0945 0.719 0.616
8 0.115 0.056 0.042 0081 0.118 0.071 0180 |
9 0.104 0.053 0.036 0.083 0.110 0.077 0.060 LW
10 0.609 0305 0.194 0.512° 0.637 0.485 0.416
11 0.609 0.305 0.194 0.512 0.637 0.485 0.416 h
12 0.609 0.305 0.194 0.512 0.637 0.485 0.416
13 0.609 0.305 0.194 0512 0.637 0.485 0.416
14 0.067 0.035 0.022 0.056 0.072 0.054 0.044
15 0.904 0452 0288 0760 0945 0719 0.616
16 0.609 0.305 0.194 0.512 0.637 0.485 0.416
17 0.241 0.122 0.071 0.217 0256 0.212 0.178
18 0.270 0.137 0.081 0.240 0.285 0.233 0.266
19 0.220 0.114 0.071 0.187 0240 0.180 0.196
20 0.366 0.175 0.111 0.311 0375 0.294 0.448
21 0.096 0.048 0.030 0.080 0.100 0.076 0.111
22 0.139 0.069 0.044 0.116 0.145 0.110 0.161
23 0.342 0.167 0.106 0.289 0.357 0.274 0.388
24 0.418 0.209 0.133 0.352 .0.437 0.333 0.285
25 0.418 0.209 0.133 0.352 0.437 0.333 0.285
26 0.904 0.452 0288 0.760 0945 0.719 0.616
27 0.435 0.212 0.136 0.364 0.446 0.342 0.304 I
28 0.066 0.036 0.023 0.055 0.074 0.052 0.039
29 0.126 0.067 0.042 0.107 0.139 0.103 0.080 q
30 0.126 0.067 0.042 0.107 0.139 0.103 0.080
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_ Quadro3.B

Classes 1 2 3 4 5 6 7 J|
Estactes (26)

1 0292 0.151 0099 0239 0324 0226 0.157

2 0.105 0.054 0037 0081 0112 0.074 0.58

3 ' 0.655 .0.328 0208 0.551 0685 0.521 0.447

4 0.178 0087 0065 0.26 0.184 0.110 0.281

5 0.112 0057 0038 0089 0.118 0082 0.068

6 0.112 0057 0038 0089 0.118 0.082 0.068

7 0.972 0486 0309 0817 1016 0773 0.663

8 0.123 0060 0045 0087 0.127 0.076 0.194

9 012 0057 0038 0089 0.118 0082 0.068

10 0.655 0328 0208 0.551 0685 0.521 0.447

1 0.655 0328 0208 0551 0.685 0.521 0.447

12 0.655 0328 0208 0.551 0685 0.521 0.447

13 0.655 0328 0208 0.551 0.685 0521 0.447

14 0.072 0037 0023 0061 0077 0.058 0.047

15 0.972 0.486 0309 0817 1016 0773 0.663

16 0.655 0328 0208 0551 0.685 0521 0.447

17 0259 0.131 0077 0233 0275 0.227 0.191)
18 0290 0.147 0087 0258 0306 0.250 o.zsei
19 0236 0.123 0077 0201 0258 0.193 0215

20 0394 0.188 0.119 0335 0403 0317 0482

21 0.103 0051 0033 0086 0.108 0.082 0.119 F
22 0.149 0.074 0047 0125 0156 0.118 0173}
23 0.368 0180 0114 0310 0384 0294 0417
2 0.449 0225 0.143 0378 0470 0.357 0.306

25 0.449 0225 0.143 0378 0470 0357 0.306

26 0.972 0486 0309 0817 1016 0.773 0.663

A avaliagdo de cada alternativa, isto €, a avéliagﬁo de cada distribuigio

concebivel de embarcagdes pelas diversas estagbes implicaria uma

enumeragdo exaustiva, que dadas as dimensGes do problema, seria bastante

dificil de concretizar. Em alternativa, utilizou-se um procedimento simples.

Com os ponderadores calculados é possivel resolver este problema de

afectagiio recorrendo a métodos de programag#o linear inteira [2]. O software
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computacional utilizado foi o ZOOM/XMP, implementado no sisterna
VAX/VMX da Faculdade de Economia, UNL.

A formulagio do problema como um: problema de progralmagﬁo linear

inteira para determinagiio da solugdo (soluges) 6ptima(s) tem a seguinte
especificacio;
' 26 7 .
Max 2 Z WijXij  ondeiindica as estagdes e j as embarcagdes
i=1 j=1 . : .
26 ,
s.a. Z wij <dj, paraj=1,..,,7
=t 7
7

D wij<b, paai=1,.,26

=1

XijE {0, 1}
sendo d; a dotagio (nimero) inicial das embarcagdes do tipo j, wij; a avaliagio
da embarcagdo j se atribufda estagdo i, b; o niimero de embarcagdes admitido
na estagio i, e xjj € a varidvel que toma o valor unitério se a embarcagio j for
atribuida a estacdo i, e o valor nulo nos restantes casos, O primeiro conjunto
de restri¢Ges exige que ndo seja excedido, na distribui¢do, o nimero de
embarcagGes existentes para cada classe. O segundo conjunto de restrigoes
exige que ndo seja atribuido a cada estagio mais do que um nimero b; de
embarcagdes. Tipicamente tem-se b = 1, para qualquer i, isto &, cada estagio
néo pode possuir mais do que uma embarcagdo,

Existem igualmente restrigges adicionais sobre as alternativas possiveis,
nomeadamente’ sobre as estagdes de Vila Chi e Aguda, pois estdo
implementadas em barras em mar aberto, As embarcagGes salva-vidas a serem
colocadas nessas estagdes tém forgosamente que pertencer i categoria Vila
Cha, que constituem as embarcagGes mais leves e susceptiveis de serem
langadas e recolhidas em cada missdo que tenham de efectuar. Também
Angeiras néio pode suportar outro tipo de salva-vidas, j4 que este teria de ficar
fundeado, o que € impossivel dadas as caracteristicas da estagio de socorros a
naifragos af existente, .

As embarcagdes de todas as restantes classes de salva-vidas sdo
demasiadamente pesadas para serem langadas (recolhidas) ao (do) mar sem a
utilizagdo de carro e/ou rampa, instrumentos inexistentes nos trés casos supra
referidos. ‘ '
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Estas restrigdes traduzem-se, no problema de programagdo linear inteira
formalizado, pela imposi¢do de valores para determinados x;;. Mais
concretamente,

xjj=1, i = Angeiras(6), Aguda(9) e Vila Cha(5), j = Vila Cha(3)
Xjj = 0, i=Angeiras(6) , Aguda(9) e Vila Chi(5), j= Vila Cha(3)
> j=1...,17
4. Os Resultados

O quadro 4 apresenta as distribuigdes obtidas, bem como o valor da
fungio objectivo, para quatro possibilidades distintas. Por meméria
apresenta-se também a actual distribuigdo. As quatro possibilidades
apresentadas correspondem a ‘

a) considerar as vinte ¢ seis estagdes iniciais e os novos barcos (6)

Atlantic 21 adquiridos.

b) idéntico a a) excepto que as embarcagdes atribuidas a estagdo de Pago
de Arcos sdo fixadas a priori. Esta opgﬁo prende-se com o facto de na
zona de Lisboa existirem outros meios de socorro a sinistros
maritimos que se poderdo substituir ao ISN em caso de necessidade.
Um exemplo € a Armada Portuguesa, com o navio SAR ("Search and
Rescue") que tem disponivel para operagdes de busca e salvamento ao
largo da costa.

¢) considerar trinta estagdes de socorros a naiifragos e as novas
embarcagdes Atlantic 21.

d) idéntico a b), mas trinta estagdes.

Contudo, em qualquer dos casos a) e ¢) ndo existe uma tnica solugio
6ptima mas vérias. Nos casos a) e ¢), a solugdo seria igualmente 6ptima se o
salva-vidas a atribuir a Pago D'Arcos fosse trocado com o atribuido a Horta
ou com o destinado a Leixdes, e/ou se o salva-vidas a atribuir a Sesimbra
fosse trocado com o a atribuir & Pévoa de Varzim (ou Peniche, ou Aveiro, ou
ainda Figueira da Foz).

No quadro 4 ¢ apreséntada, de dentro das solugGes Gptimas, a que mais se
aproxima da distribuigdo corrente. Todas as propostas feitas no que segue
podem ser alteradas de modo apropriado se se escolher outra solugdo 6ptima
- como referencial.
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Quadro 4 — Os Resultados
Salva-vidas Salva-vidas a atribuir Wl
atribifdo  Hip.a) Hip.b) Hip.c) Hip.d)

V.Castelo  W.H.  Oakley Oakley  Oakley  Oakley
Esposende D.CarlosI D.CarlosI D.Carlos I D.CarlosI D.Carlos 1
P. Varzim W.H. W.H. W.H. W.H. W.H.
Vila Conde Atlantic 21 Atlantic 21 Atlantic 21 Adantic 21
Vila Cha VilaChd VilaChd VilaChd VilaChi Vila Chi
Angeiras VilaChdi VilaCha VilaChi VilaChi VilaCha
LeixGes Waveney Waveney Waveney Waveney - Waveney
Foz Douro _ Atlantic 21 Atlantic 21 Atlantic 21 Atlantic 21
Aguda VilaChd VilaChi VilaChd VilaChi VilaCha
Aveiro - Oakley W.H. W.H. W.H. W.H,
Fig. Foz Oakley W.H. W.H. W.H. W.H.
Nazaré ~ W.H.  WH  WH  WH  WH
Peniche Oakley  W.H. WH  WH  WH
Ericeira D.Carlos I D.Carlos I
P. D'Arcos W.H. W.H. Atlantic21 W.H. Atlantic 21

‘ D.Carlos I D.Carlos I
Sesimbra  Liverpool  Oakley W.H. Oakley W.H.
Sines Oakley  Liverpool  Oakley  Liverpool Liverpool
Ferragudo D.Carlos1 Qakley Oakley Atlantic2]1  Qakley
Sagres Oakley Oakley QOakley Oakley Oakley
S.M*Olhdo D.Carlos I Adantic 21 Atlantic 21 Atlantic21 Atlantic 21
Fuzeta D.Carlos I Atlantic21 Liverpool D.CarlosI D.Carlos I
Tavira D.Carlos I Atlantic21 Atlantic 21 Atlantic 21 Atlantic 21
VRS.Anténio W.H. Adantic21 Atantic21 Atlantic21 Adantic 21
PDelgada  Oakley Oakley Oakley Oakley Oakley
A Herofsmo W H. Oakley Oakley Oakley Oakley
Horta ~Waveney Waveney Waveney Waveney Waveney
Funchal ' Oakley  Oakley
Velas D.Carlos I
Albufeira D.Carlos I D.Carlos I
Porto Santo D.Carlos I D.Carlos I

W.H. = Wilheim-Hubotter
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Nao considerando a criagio de novas estagdes do ISN, as alteragSes
sugeridas 3 distribuigio das embarcagGes pelas estagbes de socorros a
naifragos sdo importantes mas ndo diferem radicalmente da estrutura

existente. Também ndo se verifica uma alteragio radical com a restrigéo

imposta por b).

As principais alteragGes propostas, d luz dos resultados obtidos sdo:

i)

ii)

iii)

’ iv)

vi)

atribuir uma embarcagdo da classe Oakley a Viana do Castelo,
deslocando o salva-vidas atribuido a esta estagio (classe Wilheim-
Hubotter) para o litoral centro (Aveiro, Figueira da Foz ou Peniche);
atribuicio de uma embarcagio Atlantic 21 a Vila do Conde, Foz do
DoiJro, Santa Maria-Olhdo, Fuzeta, Tavira e Vila Real de Santo
Anténio.

as atribuigOes a realizar em ii) permitem libertar embarcagGes das
classes Wilheim-Hubotter (1), que deveria ser distribuido para o
litoral centro (Aveiro, Figueira da Foz ou Peniche) e D.Carlos I (3),
que deveriam ser retirados de Servigo,

o salva-vidas da classe Oakley estacionado em Sines deveria ser
encaminhado para Sesimbra, por troca com a embarcagdo da classe
Liverpool atribuida a esta 1iltima estdg:ﬁo.

a substitui¢do no litoral centro dos salva-vidas da classe Oakley por
salva-vidas da classe Wilheim-Hubotter permitiria a atribuigdo
referida em i) e a substitui¢io em Ferragudo do salva-vidas D.Carlos
I por um da classe Oakley.

atribuigfio a Ericeira de uma embarcagfo da classe D.Carlos L.

vii) Finalmente, Angra do Heroismo deveria ceder o salva-vidas da

classe Wilheim-Hubotter para o litoral centro (Aveiro, Figueira da
Foz ou Peniche) por troca com uma embarcagio da classe Oakley
pertencente a uma dessas estages.

Atribuindo 2 priori a Pago D'Arcos duas embarcagdes (uma da classe
Atlantic 21 e outra da classe D.Carlos I), a distribuigdo anterior modificar-se-

ia apenas marginalmente:

i)

a embarcagdo da.classe Oakley estacionada em Sesimbra seria
substituida por uma da classe Wilheim-Hubotter (libertada de Pago
D'Arcos).
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ii)
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a embarcagdo da classe Oakley dispensada por Sesimbra iria ocupar
o lugar em Sines da embarcagio da classe Liverpool, atribuida a
Fuzeta em substitui¢fo do salva-vidas da classe Atlantic 21 destinado
a Paco D'Arcos.

Contemplando a criagio de mais quatro estagGes, mantém-se as principais

alterages j4 enunciadas, diferindo a afectagio de embarcagSes apenas nas

estagbes com menos importincia (menor ponderagdo):

i)

ii)
iii)

iv)

a estagio de Velas deverd ser aberta, sendo-lhe destinada uma
embarcagio da classe D.Carlos 1.

a Ferragudo seria destinado um salva-vidas Atlantic 21.

a estagdo de Fuzeta serd atribuido um salva-vidas da classe D.Carlos
I (como aliés j4 sucede). -
deveriam ser criadas novas estagées em Albufeira, Funchal e Porto
Santo. Funchal receberd um salva-vidas da classe Oakley, € a
Albufeira e Porto Santo serfio afectados salva-vidas da classe
D.Carlos L

Considerando a fixagdo a priori das embarcagdes atribuidas a Pago

D'Arcos, registam-se apenas pequenas modificagdes, a saber:

i)

ii)

a estagdo de Velas deveria ser desactivada, em relagdo A situagio
anterior.

o salva-vidas da classe Wilheim-Hubotter libertado da estagdo de
Pago D'Arcos passaria para Sesimbra, deslocando-se a embarcagio
da classe Oakley atribuida a esta estagio na distribuigfio precedente
para Ferragudo, onde ocuparia o lugar do salva-vidas da classe
Adlantic 21 desviado para Pago D'Arcos .

5. Conclusoes
‘Neste trabalho foi utilizada uma anélise multicritério para determinagfo da

melhor distribui¢do das embarcagdes salva-vidas disponiveis pelo Instituto

Socorro a Naiifragos pelas suas diversas estagdes ao longo da costa

portuguesa. Com esta abordagem procurou-se tornear a falta de uma base

concreta (informagdo estatfstica devidamente discriminada e analisada) de

avaliagdo das diferentes estagBes salva-vidas pertencentes ao ISN,

nomeadamente o nimero de sinistros ocorridos e a actuagdo efectiva dos

salva-vidas (informagdo ndo disponivel). A valorizagio feita assentou na

avaliagdo qualitativa dos diferentes aspectos relevantes.
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S#o elaboradas quatro propostas de afectagdo. Naturalmente, sdo apenas
propostas baseadas na informagdo recolhida podendo existir outras
consideragdes que justifiquem alteragGes na distribuigdo de embarcagdes. De
qualquer modo, consideragdes adicionais de véria ordem traduzem-se
usualmente por restrigbes sobre as alternativas possiveis. Estas restrigdes
adicionais sdo facilmente incorpordveis. Assim, o principal objectivo deste
trabalho € o de servir de referencial e suporte & tomada de decisdo real, ¢ ndo
substitui-la, permitindo uma identificagfo clara das motivagdes da decisdo

tomada.
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Abstract

In this paper our experience in the design and implementation of a relational database
with information at local authority level for financial and planning purpose, as well as a
database for the evaluation and monitoring of FEDER-financed projects are described,

These databases are implemented using two different database management systems
(RDB/VMS and ORACLE). An effort for evaluating both approaches is accomplished.

Resumo

Neste trabalho relata-se a experiéncia dos autores na concepgdo e desenvolvimento de
uma base de dados com informag#o ao nivel local para planeamento e controlo financeiro e
de uma base de dados para acompanhamento e avaliagdo de projectos financeiros pelo
FEDER.

Estas bases de dados foram desenvolvidas usando dois sistemas de gestdo de bases de
dados (EDB/VMS ¢ ORACLE). S#o apresentadas algumas consideragfes sobre a
comparagdo das duas abordagens.

Keywords: Information management, Relau’onal database, ORACLE, RDB/VMS.
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1. Introduction

In this paper, we intend to describe our experience in the design and
implementation of two databases for regional management. The first one,
named project "CCRLVT/FEDER", has been developed to monitor and
follow up on projects applying for funding from FEDER in the Tagus Valley
and the metropolian area of Lisbon, which is the jurisdiction area of
CCRLVT, a regional planning body. The second one, called
"DGAA/Database for Local Authorities Information Management", has been
designed to provide DGAA, the central administration Department in charge
of the links with local authorities, including government financing, with on-
line detailed information on these entities and their activities, to support
diffusion of local and regional data, and provide tools for analysing and
processing it.

A peculiar aspect of this experience is that two different database
management systems are used, ORACLE and VAX/ABD, on two distipct
computers, UNISYS 5000/50 and VAX 8350, with two operating system
environments, UNIX and VMS, respectively.

2. The Project "CCRLVT/FEDER"

2.1. AIMS and general description

The CCRLVT - Comissio de Coordehagﬁo da Regido.de Lisboa e Vale do
Tejo is the entity in charge of the process of candidature and follow up of
projects for regional development in the Tagus Valley and the metropolian
area of Lisbon, applying for financial support from FEDER, the EEC fund
for regional development. The CCRLVT is.an autonomous institutional body
of the Ministry of Planning and Territory Administration entrusted with the
coordination, in that particular regional area, of technical, financial and
administartive support to local authorities and other administration
departments, for the implementation of regional plans and actions aiming at
regional development,

From the information management point of view the process of
candidature and follow up on projects applying for funding from FEDER
requires a large amount of data regarding the scope of the projects (see
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Fig.1), the financial streams that they give rise to and the control of their
physical and financial execution. |

In view of the role entrusted to CCRLVT for the administrative and
financial follow up of FEDER financed projects, the need became clear for an
information system able to provide safe and dynamic management control
over the diversity of documents and processes considered.

The requireménts of the information management system include the
ability to .

- provide well defined decision support and control information

- offer automated execution of administrative procedures;

- receive slices of information that have not been foreseen, imposed
by changes of the external environment of the organization or by
the evolution of the routines adopted internally.

Thus, as a technological means to ensure the efficiency and effectiveness
of the above-mcntiqned information system, it was decided to build, in a
UNIX environment, a relational database supported by a database
management system (ORACLE) and some system tools, and application
software for users' interface and execution of specific procedures.

173
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l ; 4 1
145~
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1985 1987 1563 1089

Fig. 1. Number of projects processed by CCRLVT seeking FEDER funding




J.D.Coelho et al | Relational databases in management 99

2.2. The information structure
A schematic representation of the information structure is given here
following the entity-relationship model (Chen, 1976) (see Fig. 2).

2.3, Users' Interfaces
2.3.1. General Development Choices

2.3.1.1. Organizational environment and adopted approach
Attending to the organizational conditions, namely those which are likely
to provide a basis for a deeply-structured organic analysis and, above all, the
functional instability of the object system, regarding either its transactions or
their environment, this project has favoured an approach by outcome
"targets", which is evident in the sequence of menus building the users'

interface.

2.3.1.2. Organizational environment and adopted approach

Software
The following software tools have been used to build the application
according to a module structure: ‘

- Interactive screen generator provided by the MBMS as a direct
interface to the database;

- Interactive query tools of ORACLE in conjunction with the bourne
shell as a map generator;

- Q-menu to generate the tree-structured users' interface menus
(Q-menu is the menu generator which is part of the office
automation software Q-office);

- Procedures in the programming language C to ensure special
features of data integrity, security and specific forms of output;

- Several auxiliary routines in bourne shell.

Hardware
A departmental computer UNISYS 5000/50 (microprocessor
MOTOROLA 68020) with terminals SVT 1220.
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2.3.2, Implemented solutions

2.3.2.1. Access to CCRLVT/FEDER application and database

Any access to the CCRLVT/FEDER application requires a user password..
Once within the main menu the user will be required to provide the password
for every executable option accessing into the database, unless he chooses to
fix his username/password through an utility menu "PASS" (options
password) for the session. The user may change his own password with the
help of the same menu. In all circumstances, the userﬁame/passwdrd that has
been provided regulates the execution of every available program, even the
viewing of the corresponding menu, and the operations relevant for each data
set (insert, query, update, delete, etc.) according to the protection rules that
have been set up by the database administrator.

2.3.2.2. Hierarchic menu structure

The menus have been organized in a hierarchical way and each one is
identified by a desingnation and/or by an index number in the hierarchical ree
(this is always present in the upper right comner of the screen).

2.3.2.3. Locating options in the menus

By means of an utility denoted "ONDE" (where) it is possible to obtain
the list of options available in the set of menus, that match a word or a
sequence of words, including wild characters, in the option title. In addition,
there is an utility that allows to move directly to any menu by providing its
index number.

2.3.2.4. Natural language as a reference paradigm

In the interface design, natural language has come out as a paradigm for
the definition of users choices whenever it was reasonable to be inplemented.
For those situations in which the input of a sequence of characters is not
providing a meaning in correspondence with the user choice, then messages
have been provided to translate the consequences of the options, that the user
may confirm or correct alternatively. |

2.3.2.5. SQL by menu :
' In addition to the SQL interface provided by the DBMS, a number of
interactive tools for automatic definition of SQL statements have been



102 -J.D.Coelho et al | Relational databases in management

provided in the menu structure. This approach has been adopted in flexible
'parameterised’ programs for output specification and, mainly, for the
inclusion of constraints in given relevant domains. 7

In this last instance, it has been decided either to provide conventional
menus for selection of constraint modes (equality, disequality, match with
wild characters, etc.) and value assigning or to offer sequences of item
oriented menus adding restraints to the selection domain. These options have
been taken in function of the domains under consideration,

The constraints are articulated in logical conjunction and disjunction in
accordance with the context in which they are set up.

2,3.2.6. Accessing to the operating system

It is implemented a function that provides access to dperating system
commands and the ability to start autonomous procedures without having to
give up the application and repeating the entry commands.

2.3.2.7. Other utilities
Besides the utilities already mentioned, there is available access, at any
point in the menu tree, to the following functions:
- querying the data dictionary
- on-line help
- clock
- current monthly calendar
- perpetual calendar, allowing to view any monthly or yearly
calendar in Christian era.

2.3.2.8. Iconic representation

In spite of having no mouse, the pre-definition of keys associated with
symbols/designations of options in the screen has conceded some form of
iconic common options, utilities and value assigning to functional parameters
(as, for example, the parameter that allows to select permanently a gi?en
candidature) up to the point in which the structure of an output is finished.
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3. The Project "DGAA/DATABASE for Local Authorities '
Information Management"

3.1. AIMS and general description
The DGAA - Direcgdo Geral de Administragdo Autdrquica is a central
administration Department acting as a link between local authorities and
central government. In particular, the financing, of local authorities is
managed through this Department. To that end, a large amount of data
regarding geographical and physical characteristics of municipalities,
infrastructures, population and housing, local authorities activities and
finance must be collected. ‘
The need for collecting and analysing a large amount of data calls for the
implementation of a relational database. The availability of a database in a
central system widens the scope of work of the technical staff and managers.
In addition, it offers the advantage of
- avoiding losses of information collected for general tasks;
- disseminating information that otherwise would be unknown or not
available;
- making available information in magnetic media instead of sheets
of paper;
- eliminating the redundant input of information;
- allowing for computer networks, inclhding personal computers.
The advantages offered by small systems are maintained by implementing
interfaces to the database. Thus, the technical staff may benefit from
microcomputer software (Excel, Lotus 123, Symphony or others) with the
advantage of incorporating data transferred from the database automatically,
The users may gain access to information accumulated over a much longer
period of time, gathered for other studies and by other entities. The access to
information is also easier since data is in a single source and user-friendly
interface menus are available.
The information management system behind this relational database is
VAX/RDB. The information security is enforced by the data administrator
who also ensures that regular backups are kept on magnetic tape.
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Data protection is another function assigned to the database administrator
who provides or denies users' privileges for accessing and manipulatirig data
in each sector or field of information.

In this particular project, the transfer of large bulks of information from
other central administration departments (Servigos de Informdtica do
Ministério da Justiga, Servigos Técnicos de Apoio ao Processo Eleitoral,
Gabinete de Estudos ¢ Planeamento do Minisiério da Educag¢io), public
companies (CTT, TLP) and the National Bureau of Statistics (Instituto
Nacional de Estatistica) has been accomplished.

In its very beginning, the computer facilities of the Faculty of Economics,
New University of Lisbon were used to launch the project. DGAA later
ihstalled its own computer facilities, where the database is now residing,
which act as the central node of a small computer network connecting offices
in different locations.

3.2. The information structure
- In contrast with the CCRLVT/FEDER project, a more extensive and less
" schematic description of the information structure is given here.

Since a relational database model has been chosen, we have tried to make
use of its advantages. The design of tables has been according to three
criteria;

1. Perfomance as trade-off between minimization of disk space and
access time;

2. Data coherency;

3. Integrity and security of data,

The integrity and security of data is important in two facets. First, there is
the essential need of protecting data against corruption or erasure, either by
error or vandalism (it must be kept in mind that the database is aimed at
serving a large number of users) and reserving for selected users the access to
certain data areas. On the other hand, the objective of decentralizing the input
and maintenance of the database requires a large amount of freedom in
privileges to write and modify data.

The data coherence has to be ensured first by careful coding, since
different sources use distinct codes for the same entities, which may be
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caused by various coding approaches or distinct code updates (for instance,
when new local authorities are created). Secondly, simple and efficient
procedures to control and correct the input data must be implemented,
particularly for extensive and repetitive information.
In a first stage, a number of blocks of information have been defined,

following a users point of view:

- General data on municipalities

- General data on counties

- Cities

- Towns

- - Villages

- Demographic data

- Economic data at the local level

- Electoral data

- Facilities and services

- Municipality finances (budgets and yearly accounts)

- Proxies and ratios of local area management

Later, in parallel with data availability, tables have been defined in the

database to allow loading it. The main entities in the database (municipalities,
counties, cities, towns, villages, regions and associations of municipalities)
have been coded following the National Bureau of Statistics (INE) code,
which is based on a hierarchical ranking of three levels of local areas (distrito,
concelho and freguesia) ordered alphabetically, with some add-ons
originated through local-area creation after the first issue of the code, or by an
internal code defined as an extension of INE Code. In addition, the regional
EEC code NUT (Nomenclatura de Unidades Territoriais) is used.

3.3. Users' Interfaces
As mentioned above, it is intented that this database be a tool for technical
staff enrolled in local-area management and planning, and also to be support
diffusion of local and regional information.
Thus, it is required that a number of tools be available, namely those
regarding
- Database control
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- Loading and maintenance of the database
- Querying and data processing

The control of the database is through RDO (Relational Database
Operator), a set of commands that besides allowing data querying and
manipulation, provides metadata management (creation, modification and
elimination of relations, fields; indexes and views), offers information
protection and control of access by user, group of users and type of action
(read, write, modify and erase), and gives control on information volumes.

The loading of the database is done primarily from other magnetic media
(tapes, diskettes, compact tapes and other computer disks through wide-area
networks) by means of specific input programs, or by direct input from
surveys and other documentation through procedures that provide for input,
validation and error correction. Whenever possible, the transfer from
magnetic media is adopted. This has forced the development of expertise on
transfer of information from VAXs, MACINTOSHes, UNISYS and IBMs.
Reversely, interfaces have been developed to allow transfer to LOTUS 123,
EXCEL and WORDSTAR for further information processing.

An important aim is to offer online querying of all information available in
the database. This is accomplished through a menu tree that provides nearly-
instant access to tables with data in every database information area, including
time series whenever applicable. Examples of tables are:

" - Census data for each county
- Electoral results by local area
- Municipalities’' budgets
- Municipalities' yearly accounts over the last five years

These procedures allow for the copying of the table into a file for printing
or for further information processing, either directly from the screen or
through a specific menu for that purpose.

Users wishing to process information in statistical-econometric packages,
spreadsheets or word processors, may retrieve data from the database
through the menu or by using the relational database operator (RDO). This
language provides for interactive querying and retrieving of data from
database relations, views, and any combination of them, and offers access
from users' programs in PASCAL, C, FORTRAN, COBOL and BASIC to




J.D.Coelho et al | Relational databases in management 107

database fields, facilitating information processing prior to using those

packages.

4, Concluding Comments

As a first stage to evaluate our experience in the design and
implementation of both databases, we have to state that ORACLE and
RDB/VMS have allowed us to attain similar results with equivalent efforts.
Regarding data security and protection both databasé management systems
offer high level functions ensuring our essential requirements,

The integration of Q-Menu with ORACLE in the UNIX environment has
been very-convenient to build users' friendly interfaces. We have not had an
equivalent tool in RDB/VMS. Therefore, we have opted in this latter case to
embody PASCAL routines with the screen generator FMS.

We recognize, however, that fourth generation products VAX/RALLY
and VAX/TEAMDATA, that we have not available at the time, might be even
a better approach.

No effort has been made to compare access times, since the computer
systems were not equivalent and the results would depend on many
exogenous parameters, '
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